940 resultados para Écran tactile
Resumo:
Pathfinder (2016) is an audiovisual performance-game for a solo drummer,exploring the synergies between multiple contemporary creative practices.The work navigates between music composition, improvisation, projection/ light art and game art. At its heart lies a bespoke electro-acoustic instrument,the augmented drum-kit, used not only to provide the sonic content of the work in real-time, but also as a highly expressive game controller that interacts with an instrument-specific game. The musical instrument offers a much wider range of expressive possibilities, control and tactile feedback in comparison to a traditional general-purpose game controller, and as a result it affords a very diverse and nuanced gameplay performance. Live electronics, lights, projections and the drum-kit all make up the performance-game’s universe, within which the performer has to explore, adjust, navigate and complete a journey.
Resumo:
Braille is a communication tool in decline, in America by 80% since 1950, and in the UK to the extent that only 1% of blind people are now thought to read Braille.1, 2 There are a variety of causal factors, including the phasing out of Braille instruction due to the educational mainstreaming of blind children and the resistance to learning Braille by those who lose sight later in life.3Braille is a writing system of raised dots that allows blind people to read and write tactilely. Each Braille character comprises a cell of six potentially raised dots, two dots across and three dots down. It is designed only to communicate the message and does not convey the tonality provided by visual fonts.However, in his book Design Meets Disability, Graham Pullin, observes that: “Braille is interesting and beautiful, as abstract visual and tactile decoration, intriguing and indecipherable to the nonreader ” and continues; “…braille could be decorative for sighted people.”4I assert that the increasing abandonment of Braille frees it from its restrictive constraints, opening it to exploration and experimentation, and that this may result in Braille becoming dynamic expression for the sighted, as well as the partially sighted and blind.Printmaking is well suited for this exploration. Printmaking processes and techniques can result in prints aesthetically compelling to both senses of sight and touch. Established approaches, such as flocking, varnishes, puff-ink, embossing and die cut, combined with experiments in new techniques in laser cutting and 3D printing, create visually and texturally vibrant prints.In this paper I will detail my systematic investigation of sensually expressive printmaking concentrating on the issues surrounding Braille as a printmaking design element paying particular attention to the approaches and techniques used not only in producing its visual style but to those techniques used to keep it integrally tactile.
Resumo:
Signifying road-related events with warnings can be highly beneficial, especially when imminent attention is needed. This thesis describes how modality, urgency and situation can influence driver responses to multimodal displays used as warnings. These displays utilise all combinations of audio, visual and tactile modalities, reflecting different urgency levels. In this way, a new rich set of cues is designed, conveying information multimodally, to enhance reactions during driving, which is a highly visual task. The importance of the signified events to driving is reflected in the warnings, and safety-critical or non-critical situations are communicated through the cues. Novel warning designs are considered, using both abstract displays, with no semantic association to the signified event, and language-based ones, using speech. These two cue designs are compared, to discover their strengths and weaknesses as car alerts. The situations in which the new cues are delivered are varied, by simulating both critical and non-critical events and both manual and autonomous car scenarios. A novel set of guidelines for using multimodal driver displays is finally provided, considering the modalities utilised, the urgency signified, and the situation simulated.
Resumo:
Discovering Hands (DH) es un proyecto que nace en Alemania en el 2006, liderado por el doctor Frank Hoffmann. El programa se desarrolla pensando en el importante problema de salud pública en el cual se ha convertido en el cáncer de mama, pues según la Organización Mundial de la Salud es el mayor causal de muerte en mujeres, tanto en países desarrollados como en vía de desarrollo, y en Alemania esta enfermedad acaba con la vida de aproximadamente 18.000 mujeres cada año. (The Global Journal, 2014) DH entrena y capacita mujeres visualmente impedidas para detectar de manera temprana los signos de cáncer de mama, dado que estas poseen un sentido del tacto más desarrollado que el de una persona que no se encuentre limitada visualmente. Esto les permite localizar el cáncer de forma más rápida que un médico general ya que son capaces de identificar los tumores más pequeños, logrando así reducir notablemente los costos totales del tratamiento de esta enfermedad. Adicional a esto, el capacitar y preparar a mujeres con discapacidad visual para la detección temprana de cáncer de mama, incrementa la fuerza laboral del país, pues estas mujeres pasarían a ser parte de la población económicamente activa del mismo (PEA) y lograrían que las personas dejen de percibir esta condición como una discapacidad y por el contrario la vean como una ventaja. Después de unos años de prueba, el programa ha sido mejorado y extendido tanto en Alemania como en otros países (Austria), razón por la cual se realizó el estudio de factibilidad del proyecto en países como Colombia - donde se quiere llevar a cabo un proyecto piloto en la ciudad de Cali - México y Argentina. El presente trabajo se enfoca en Argentina, por medio del cual se busca proponer aportes para disminuir las causas de muertes originadas por esta enfermedad y los altos costos que estas le generan al sector de la salud de este país. Con el estudio se logró identificar la factibilidad de la implementación del modelo de negocio, evidenciando que Argentina cuenta con unas particularidades en su sistema de gobierno que pueden hacer que la puesta en práctica del proyecto sea más compleja que en otros países.
Resumo:
El modelo de Discovering Hands ha sido reconocido internacionalmente como un proyecto innovador que se ha expandido por diferentes países del mundo, como Austria, y se ha empezado a estudiar la propuesta en países como República Checa, India y Colombia. (Discovering Hands, 2016). Esto se debe a que no solo mejora el tratamiento de cáncer de mama, sino que también reduce los costos totales de tratamiento de la enfermedad y aumenta la fuerza laborar de los países donde esté presente. Al representar una gran oportunidad en diferentes aspectos, se quiso desarrollar un estudio de factibilidad del modelo de negocio en tres países de América Latina, Colombia –donde ya se encuentra en marcha un proyecto piloto liderado por la CAF en Cali - , Argentina y México. El presente trabajo consiste en dicho estudio de factibilidad, focalizado en México; por medio de este se buscaron tres cosas primordiales, conocer y estudiar el contexto del mercado y situación de salud en el país, analizar los datos recogidos, con el fin de proponer soluciones para disminuir una de las principales causas de muerte en el país. Actualmente en México el 52% de casos de cáncer de mama diagnosticados sucede en etapas tardías, aumentando el riesgo de muerte de los pacientes (Colima, 2013). Con el estudio se logró identificar una oportunidad potencial para Discovering Hands siendo su estrategia un recurso adicional para contribuir a mejorar el diagnóstico precoz de cáncer de mama en el país y debido a esto se presenta un modelo de negocio adaptable a las necesidades mexicanas
Resumo:
A tese teórico-prática de doutoramento apresentada contempla a investigação, a criação, a produção e a conceptualização da instalação artística interativa intitulada Por baixo da pele outra pele. A Obra é constituída por três objetos tridimensionais concebidos à escala humana. Recorre a materiais flexíveis, como têxteis, convidando o público (interator), à envolvência física, numa relação corporal sensorial e sensual com a obra. Os objetos contêm dispositivos técnicos interativos e sensores tácteis, que, ao serem utilizados, desencadeiam estímulos multissensoriais no espectador. A instalação interativa focaliza a experiência háptica e íntima do interator considerando os seus mecanismos sensoriais e cognitivos como um potencial aparato na construção de experiências fenomenológicas, singulares e individuais. A autora considera a interatividade enquanto elemento potenciador da experiência estética visual háptica. Na argumentação conceitual da obra, reflete-se sobre o tema da visualidade háptica interativa a partirdos conceitos de ecrã, corpo e interface, assim como de endossensorialidade. Instrumentam-se metodologias de investigação em ação, experimentais e observacionais. Apresentam-se os processos investigativos, criativos e técnicos necessários ao desenvolvimento e à materialização da instalação artística. A investigação revela-se de grande interesse para o avanço da pesquisa de novas linguagens experimentais apresentando estratégias de criação artística que, ao privilegiarem o corpo físico e fenomenológico do interator, transpõe a experiência háptica interativa para um grau interno de imersão motoro-sensorial; Underneath the skin another skin: art installation. Body, screen and interface towards an interactive haptic visuality. Abstract: The theoretical-practical doctorate dissertation presents the research and conceptual framework behind, and the processes leading to, the creation and production of the interactive installation art piece Underneath the skin, another skin. The piece is presented in the shape of three human-scale tridimentional objects. It is made from flexible materials, such as textiles, inviting the (interacting) audience, to physically engage in a bodily sensorial, and sensuous, relationship with the artwork. The objects enclose interactive devices and tactile sensors that, when used, trigger in the interactor multiple sensorial stimuli. The interactive installation focuses on the interactor's intimate haptic experience taking in consideration his or hers sensorial and cognitive mechanisms as a potential apparatus in the construction of unique individual phenomenological experiences. The author understands interactivity as a triggering element into an haptic visual aesthetical experience. The supporting conceptual reasoning deals with thought and criticism on interactive haptic visuality applied to the concepts of screen, body and interface, as well as with that of endo-sensoriality. The dissertation describes the use of experimental and observation research methodologies. It also elaborates on the research, creative and technical processes at play in the installation's development and realization. The research at hand has shown great potential for the further development of new experimental languages, as it presents art-creation strategies privileging the interactor's physical and phenomenological body, and thus able to take the interactive haptic experience onto an greater inner level of motor-sensorial immersion.
Resumo:
Psychological characterisation of the somatosensory system often focusses on minimal units of perception, such as detection, localisation, and magnitude estimation of single events. Research on how multiple simultaneous stimuli are aggregated to create integrated, synthetic experiences is rarer. This thesis aims to shed a light on the mechanisms underlying the integration of multiple simultaneous stimuli, within and between different sub-modalities of the somatosensory system. First, we investigated the ability of healthy individuals to perceive the total intensity of composite somatosensory patterns. We found that the overall intensity of tactile, cold, or warm patterns was systematically overestimated when the multiple simultaneous stimuli had different intensities. Perception of somatosensory totals was biased towards the most salient element in the pattern. Furthermore, we demonstrated that peak-biased aggregation is a genuine perceptual phenomenon which does not rely on the discrimination of the parts, but is rather based on the salience of each stimulus. Next, we studied a classical thermal illusion to assess participants’ ability to localise thermal stimuli delivered on the fingers either in isolation, or in uniform and non-uniform patterns. We found that despite a surprisingly high accuracy in reporting the location of a single stimulus, when participants were presented with non-uniform patterns, their ability to identify the thermal state of a specific finger was completely abolished. Lastly, we investigated the perceptual and neural correlates of thermo-nociceptive interaction during the presentation of multiple thermal stimuli. We found that inhibition of pain by warmth was independent from both the position and the number of thermal stimuli administered. Our results suggest that nonlinear integration of multiple stimuli, within and between somatosensory sub-modalities, may be an efficient way by which the somatosensory system synthesises the complexity of reality, providing an extended and coherent perception of the world, in spite of its deep bandwidth limitations.
Resumo:
Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.
Resumo:
The work activities reported in this PhD thesis regard the functionalization of composite materials and the realization of energy harvesting devices by using nanostructured piezoelectric materials, which can be integrated in the composite without affecting its mechanical properties. The self-sensing composite materials were fabricated by interleaving between the plies of the laminate the piezoelectric elements. The problem of negatively impacting on the mechanical properties of the hosting structure was addressed by shaping the piezoelectric materials in appropriate ways. In the case of polymeric piezoelectric materials, the electrospinning technique allowed to produce highly-porous nanofibrous membranes which can be immerged in the hosting matrix without inducing delamination risk. The flexibility of the polymers was exploited also for the production of flexible tactile sensors. The sensing performances of the specimens were evaluated also in terms of lifetime with fatigue tests. In the case of ceramic piezo-materials, the production and the interleaving of nanometric piezoelectric powder limitedly affected the impact resistance of the laminate, which showed enhanced sensing properties. In addition to this, a model was proposed to predict the piezoelectric response of the self-sensing composite materials as function of the amount of the piezo-phase within the laminate and to adapt its sensing functionalities also for quasi-static loads. Indeed, one final application of the work was to integrate the piezoelectric nanofibers in the sole of a prosthetic foot in order to detect the walking cycle, which has a period in the order of 1 second. In the end, the energy harvesting capabilities of the piezoelectric materials were investigated, with the aim to design wearable devices able to collect energy from the environment and from the body movements. The research activities focused both on the power transfer capability to an external load and the charging of an energy storage unit, like, e.g., a supercapacitor.
Resumo:
Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.