997 resultados para transitional space
Resumo:
We describe the automatic synthesis of a global nonlinear controller for stabilizing a magnetic levitation system. The synthesized control system can stabilize the maglev vehicle with large initial displacements from an equilibrium, and possesses a much larger operating region than the classical linear feedback design for the same system. The controller is automatically synthesized by a suite of computational tools. This work demonstrates that the difficult control synthesis task can be automated, using programs that actively exploit knowledge of nonlinear dynamics and state space and combine powerful numerical and symbolic computations with spatial-reasoning techniques.
Resumo:
Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead to net translation and/or rotation of the body in the manifold. Presuming space-time is a curved manifold as portrayed by general relativity, translation in space can be accomplished simply by cyclic changes in the shape of a body, without any thrust or external forces.
Resumo:
Future NASA plans to launch large space strucutres solicit the need for effective vibration control schemes which can solve the unique problems associated with unwanted residual vibration in flexible spacecraft. In this work, a unique method of input command shaping called impulse shaping is examined. A theoretical background is presented along with some insight into the methdos of calculating multiple mode sequences. The Middeck Active Control Experiment (MACE) is then described as the testbed for hardware experiments. These results are shown and some of the difficulties of dealing with nonlinearities are discussed. The paper is concluded with some conclusions about calculating and implementing impulse shaping in complex nonlinear systems.
Resumo:
This dissertation presents a model of the knowledge a person has about the spatial structure of a large-scale environment: the "cognitive map". The functions of the cognitive map are to assimilate new information about the environment, to represent the current position, and to answer route-finding and relative-position problems. This model (called the TOUR model) analyzes the cognitive map in terms of symbolic descriptions of the environment and operations on those descriptions. Knowledge about a particular environment is represented in terms of route descriptions, a topological network of paths and places, multiple frames of reference for relative positions, dividing boundaries, and a structure of containing regions. The current position is described by the "You Are Here" pointer, which acts as a working memory and a focus of attention. Operations on the cognitive map are performed by inference rules which act to transfer information among different descriptions and the "You Are Here" pointer. The TOUR model shows how the particular descriptions chosen to represent spatial knowledge support assimilation of new information from local observations into the cognitive map, and how the cognitive map solves route-finding and relative-position problems. A central theme of this research is that the states of partial knowledge supported by a representation are responsible for its ability to function with limited information of computational resources. The representations in the TOUR model provide a rich collection of states of partial knowledge, and therefore exhibit flexible, "common-sense" behavior.
Resumo:
A model is presented that deals with problems of motor control, motor learning, and sensorimotor integration. The equations of motion for a limb are parameterized and used in conjunction with a quantized, multi-dimensional memory organized by state variables. Descriptions of desired trajectories are translated into motor commands which will replicate the specified motions. The initial specification of a movement is free of information regarding the mechanics of the effector system. Learning occurs without the use of error correction when practice data are collected and analyzed.
Resumo:
In order to improve the sulfur resistance of noble metal catalysts in the aromatic hydrogenation of diesel fuel, the alloying effect of non-noble metals with Pd was studied. Toluene hydrogenation over Pd and Pd-M bimetallic catalysts (M = Cr, W,La, Mn, Mo, Ag) on a mixed HY-Al2O3 support was investigated in the presence of 3000 ppm sulfur as thiophene in the feedstock. The results showed that the addition of the second metals strongly affected the activity of toluene hydrogenation, which suggests that the sulfur resistibility of Pd-M bimetallic catalysts is much different from single Pd. La, Mn, Mo and Ag decreased the sulfur resistance of the palladium catalysts. For example, the toluene conversion at 553 K was observed to decrease sharply from 39.4 wt.% on Pd to 1.6 wt.% on Pd-Ag, which is by a factor of 25. One of the important findings in this article is that Cr and W increase hydrogenation activity of Pd catalysts. The reactions occurring on these catalysts include hydrogenation, isomerization and hydrocracking, The addition of the second metals has no noticeable effects on the hydrogenation and isomerization selectivity, but it slightly suppresses hydrocracking reactions. The four typical catalysts, Pd-Cr, Pd-W, Pd-Ag and Pd were characterized by infrared (IR) spectroscopy of pyridine and CO. LR spectra of CO revealed the strong interaction between Pd and the second metal as Cr, W and Ag (or their oxide), indicating that the improvement in sulfur resistance originates from electron-deficient Pd with the addition of second metals. (C) 2001 Elsevier Science B.V. All rights reserved.
Using an Outdoor Learning Space to Teach Sustainability and Material Processes in HE product Design.
Resumo:
The world is facing environmental changes that are increasingly affecting how we think about manufacturing, the consumption of products and use of resources. Within the HE product design community, thinking and designing sustainability’ has evolved to become a natural part of the curriculum. Paradoxical as the rise in awareness of sustainability increases there is growing concern within HE product design of the loss of workshop facilities and as a consequence a demise in teaching traditional object-making skills and material experimentation. We suggest the loss of workshops and tangible ‘learning by making skills’ also creates a lost opportunity for a rich learning resource to address sustainable thinking, design and manufacture ‘praxis’ within HE design education. Furthermore, as learning spaces are frequently discussed in design research, there seems to be little focus on how the use of an outdoor environment might influence learning outcomes particularly with regard to material teaching and sustainability. This 'case study' of two jewellery workshops, used outdoor learning spaces to explore both its impact on learning outcomes and to introduce some key principles of sustainable working methodologies and practices. Academics and students mainly from Norway and Scotland collaborated on this international research project. Participants made models from disposable packaging materials, which were cast in tin, in the sand on a local beach, using found timber to create a heat source for melting the metal. This approach of using traditional making skills, materials and nature was found to be a relevant contribution to a sustainable discourse.
Resumo:
R. Daly and Q. Shen. A Framework for the Scoring of Operators on the Search Space of Equivalence Classes of Bayesian Network Structures. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 67-74.
Resumo:
Eckerdal, A., McCartney, R., Mostr?m, J. E., Sanders, K., Thomas, L., and Zander, C. 2007. From Limen to Lumen: computing students in liminal spaces. In Proceedings of the Third international Workshop on Computing Education Research (Atlanta, Georgia, USA, September 15 - 16, 2007). ICER '07. ACM, New York, NY, 123-132.
Resumo:
Lloyd, Noel G., and Pearson, Jane M., 'Space saving calculation of symbolic resultants', Mathematics in Computer Science, 1 (2007), 267-290.
Resumo:
Sexton, J. (2006). A Cult Film by Proxy: Space is the Place and the Sun Ra Mythos. New Review of Film and Television Studies. 4(3), pp.197-215. RAE2008
Resumo:
On the basis of two indecidable texts (Thomas Clerc, “Paris, musée du XXIe siècle. Le dixième arrondissement”, Gallimard 2007 and Philippe Vasset, “Un livre blanc”, Fayard 2007), we will reflect on new approaches to the city in contemporary French litterature. Clerc and Vasset, in their respective texts, suggest considering litterature as a series of practices connected with the exploration of the city (Clerc) and of the urban area (Vasset) according to the idea of an arbitrary itinerary. The image of the city whose space, subject to a permanent process of museifi cation, is constantly considered to be a work of art (Clerc) contrasts with a project of viewing the deserted areas of the city and of its surroundings as an infinite collection of “artistic installations” created in daily life (Vasset). Clerc’s and Vasset’s artistic mentality leads them to the fascination with “works of involuntary art”, both concrete signs and tangible proof of the transitional period which they try to describe systematically, following, at the same time, the principles of an axonometric city map.
Resumo:
Similarly to protein folding, the association of two proteins is driven by a free energy funnel, determined by favorable interactions in some neighborhood of the native state. We describe a docking method based on stochastic global minimization of funnel-shaped energy functions in the space of rigid body motions (SE(3)) while accounting for flexibility of the interface side chains. The method, called semi-definite programming-based underestimation (SDU), employs a general quadratic function to underestimate a set of local energy minima and uses the resulting underestimator to bias further sampling. While SDU effectively minimizes functions with funnel-shaped basins, its application to docking in the rotational and translational space SE(3) is not straightforward due to the geometry of that space. We introduce a strategy that uses separate independent variables for side-chain optimization, center-to-center distance of the two proteins, and five angular descriptors of the relative orientations of the molecules. The removal of the center-to-center distance turns out to vastly improve the efficiency of the search, because the five-dimensional space now exhibits a well-behaved energy surface suitable for underestimation. This algorithm explores the free energy surface spanned by encounter complexes that correspond to local free energy minima and shows similarity to the model of macromolecular association that proceeds through a series of collisions. Results for standard protein docking benchmarks establish that in this space the free energy landscape is a funnel in a reasonably broad neighborhood of the native state and that the SDU strategy can generate docking predictions with less than 5 � ligand interface Ca root-mean-square deviation while achieving an approximately 20-fold efficiency gain compared to Monte Carlo methods.
Resumo:
Space carving has emerged as a powerful method for multiview scene reconstruction. Although a wide variety of methods have been proposed, the quality of the reconstruction remains highly-dependent on the photometric consistency measure, and the threshold used to carve away voxels. In this paper, we present a novel photo-consistency measure that is motivated by a multiset variant of the chamfer distance. The new measure is robust to high amounts of within-view color variance and also takes into account the projection angles of back-projected pixels. Another critical issue in space carving is the selection of the photo-consistency threshold used to determine what surface voxels are kept or carved away. In this paper, a reliable threshold selection technique is proposed that examines the photo-consistency values at contour generator points. Contour generators are points that lie on both the surface of the object and the visual hull. To determine the threshold, a percentile ranking of the photo-consistency values of these generator points is used. This improved technique is applicable to a wide variety of photo-consistency measures, including the new measure presented in this paper. Also presented in this paper is a method to choose between photo-consistency measures, and voxel array resolutions prior to carving using receiver operating characteristic (ROC) curves.
Resumo:
A novel technique to detect and localize periodic movements in video is presented. The distinctive feature of the technique is that it requires neither feature tracking nor object segmentation. Intensity patterns along linear sample paths in space-time are used in estimation of period of object motion in a given sequence of frames. Sample paths are obtained by connecting (in space-time) sample points from regions of high motion magnitude in the first and last frames. Oscillations in intensity values are induced at time instants when an object intersects the sample path. The locations of peaks in intensity are determined by parameters of both cyclic object motion and orientation of the sample path with respect to object motion. The information about peaks is used in a least squares framework to obtain an initial estimate of these parameters. The estimate is further refined using the full intensity profile. The best estimate for the period of cyclic object motion is obtained by looking for consensus among estimates from many sample paths. The proposed technique is evaluated with synthetic videos where ground-truth is known, and with American Sign Language videos where the goal is to detect periodic hand motions.