926 resultados para testing method
Resumo:
This study extends the ‘zero scan’ method for CT imaging of polymer gel dosimeters to include multi-slice acquisitions. Multi slice CT images consisting of 24 slices of 1.2 mm thickness were acquired of an irradiated polymer gel dosimeter, and processed with the zero scan technique. The results demonstrate that zero scan based gel readout can be successfully applied to generate a three dimensional image of the irradiated gel field. Compared to the raw CT images the processed figures and cross gel profiles demonstrated reduced noise and clear visibility of the penumbral region. Moreover these improved results further highlight the suitability of this method in volumetric reconstruction with reduced CT data acquisition per slice. This work shows that 3D volumes of irradiated polymer gel dosimeters can be acquired and processed with x-ray CT.
Resumo:
Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Aim To develop and psychometrically test the Barriers to Nurses’ use of Physical Assessment Scale. Background There is growing evidence of failure to recognise hospitalised patients at risk of clinical deterioration, in part due to inadequate physical assessment by nurses. Yet, little is known about the barriers to nurses’ use of physical assessment in the acute hospital setting and no validated scales have been published. Design Instrument development study. Method Scale development was based on a comprehensive literature review, focus groups, expert review and psychometric evaluation. The scale was administered to 434 acute care registered nurses working at a large Australian teaching hospital between June and July 2013. Psychometric analysis included factor analysis, model fit statistics and reliability testing. Results The final scale was reduced to 38 items representing seven factors, together accounting for 57.7% of the variance: (1) reliance on others and technology, (2) lack of time and interruptions, (3) ward culture, (4) lack of confidence, (5) lack of nursing role models, (6) lack of influence on patient care, and; (7) specialty area. Internal reliability ranged from .70 to .86. Conclusion Findings provide initial evidence for the validity and reliability of the Barriers to Nurses’ use of Physical Assessment Scale and point to the importance of understanding the organisational determinants of nurses’ assessment practices. The new scale has potential clinical and research applications to support nursing assessment in acute care settings.
Resumo:
Largely as a result of mass unemployment problems in many European countries, the dynamics of job creation has in recent years attracted increased interest on the part of academics as well as policy-makers. In connection to this, a large number of studies carried out in various countries have concluded that SMEs play a very large and/or growing role as job creators (Birch, 1979; Baldwin and Picot, 1995; Davidsson, 1995a; Davidsson, Lindmark and Olofsson, 1993; 1994; 1995; 1997a; 1997b; Fumagelli and Mussati, 1993; Kirchhoff and Phillips, 1988; Spilling, 1995; for further reference to studies carried out in a large number of countries see also Aiginger and Tichy, 1991; ENSR, 1994; Loveman and Sengenberger, 1991; OECD, 1987; Storey and Johnson, 1987). While most researchers agree on the importance of SMEs, there is some controversy as regards whether this is mainly a result of many small start-ups and incremental expansions, or if a small minority of high growth SMEs contribute the lion’s share of new employment. This is known as the ‘mice vs. gazelles’ or ‘flyers vs. trundlers’ debate. Storey strongly advocates the position that the small group of high growth SMEs are the ‘real’ job creators (Storey, 1994; Storey & Johnson, 1987), whereas, e.g., the Davidsson et al research in Sweden (cf. above) gives more support for the ‘mice’ hypothesis.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland–Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Resumo:
Background Drink driving among women is a growing problem in many motorised countries. While research has shown that male and female drink drivers differ on a number of characteristics, few studies have addressed the circumstances surrounding women’s drink driving offences specifically. Aim To add to previous research by comparing apprehension characteristics among men and women and to extend the understanding of the female drink driving problem by investigating the drink driving characteristics that are unique to women. Results The sample consisted of the 248,173 (21.5% women) drink drivers apprehended between 2000 and 2011 in Queensland, Australia. Gender comparisons showed that women were older, had lower levels of reoffending, and were more likely to be apprehended in Major Cities compared to men. Comparisons of age group and reoffending and non-reoffending among female drink drivers only revealed that higher BAC readings were more common among younger women. Moreover, a substantial minority (13.7%) of women aged 24 years or younger were apprehended with a BAC below0.05%, reflecting a breach of the zero tolerance BAC for provisional licence holders in Australia. Older women were more likely to be charged with a ‘failure to provide a test’ offence as a result of refusing to provide a breath or blood sample, indicating that drink driving is associated high levels of stigma for this group. Reoffending occurred among 16.2% of the female drink drivers and these drivers were more likely than non-reoffending drivers to record a mid to high range BAC, to be aged 30-39 or below 21years, and to be apprehended in Inner Regional or Remote locations. Conclusion Findings highlight the unique circumstances and divergent needs of female drink drivers compared to male drivers and for different groups of female drivers.
Resumo:
Aims and objectives. This study was undertaken to measure and analyse levels of acoustic noise in a General Surgical Ward. Method. Measurements were undertaken using the Norsonic 116 sound level meter (SLM) recording noise levels in the internationally agreed ‘A’ weighted scale. Noise level data and observational data as to the number of staff present were obtained and recorded at 5-min intervals over three consecutive days. Results. Results of noise level analysis indicated that mean noise level within this clinical area was 42.28 dB with acute spikes reaching 70 dB(A). The lowest noise level attained was that of 36 dB(A) during the period midnight to 7 a.m. Non-parametric testing, using Spearman's Rho (two-tailed), found a positive relationship between the number of staff present and the level of noise recorded, indicating that the presence of hospital personnel strongly influences the level of noise within this area. Relevance to clinical practice. Whilst the results of this may seem self-evident in many respects the problems of excessive noise production and the exposure to it for patients, hospital personnel and relatives alike continues unabated. What must be of concern is the psychophysiological effects excessive noise exposure has on individuals, for example, decreased wound healing, sleep deprivation and cardiovascular stimulation.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
We present a finite volume method to solve the time-space two-sided fractional advection-dispersion equation on a one-dimensional domain. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. We demonstrate how the finite volume formulation provides a natural, convenient and accurate means of discretising this equation in conservative form, compared to using a conventional finite difference approach. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.