986 resultados para surface damage
Resumo:
In this paper we propose an innovative methodology for automated profiling of illicit tablets bytheir surface granularity; a feature previously unexamined for this purpose. We make use of the tinyinconsistencies at the tablet surface, referred to as speckles, to generate a quantitative granularity profileof tablets. Euclidian distance is used as a measurement of (dis)similarity between granularity profiles.The frequency of observed distances is then modelled by kernel density estimation in order to generalizethe observations and to calculate likelihood ratios (LRs). The resulting LRs are used to evaluate thepotential of granularity profiles to differentiate between same-batch and different-batches tablets.Furthermore, we use the LRs as a similarity metric to refine database queries. We are able to derivereliable LRs within a scope that represent the true evidential value of the granularity feature. Thesemetrics are used to refine candidate hit-lists form a database containing physical features of illicittablets. We observe improved or identical ranking of candidate tablets in 87.5% of cases when granularityis considered.
Resumo:
The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.
Resumo:
The interaction of atomic hydrogen with C4H9, Si4H9, and Ge4H9 model clusters has been studied using all-electron and pseudopotential ab initio Hartree-Fock computations with basis sets of increasing flexibility. The results show that the effect of polarization functions is important in order to reproduce the experimental findings, but their inclusion only for the atoms directly involved in the chemisorption bond is usually sufficient. For the systems H-C4H9 and H-Si4H9 all-electron and pseudopotential results are in excellent agreement when basis sets of comparable quality are used. Besides, semiempirical modified-neglect-of-differential-overlap computations provide quite reliable results both for diamond and silicon and have been used to investigate larger model clusters. The results confirm the local nature of chemisorption and further justify the use of minimal X4H9 model clusters.
Resumo:
Repeated passaging in conventional cell culture reduces pluripotency and proliferation capacity of human mesenchymal stem cells (MSC). We introduce an innovative cell culture method whereby the culture surface is dynamically enlarged during cell proliferation. This approach maintains constantly high cell density while preventing contact inhibition of growth. A highly elastic culture surface was enlarged in steps of 5% over the course of a 20-day culture period to 800% of the initial surface area. Nine weeks of dynamic expansion culture produced 10-fold more MSC compared with conventional culture, with one-third the number of trypsin passages. After 9 weeks, MSC continued to proliferate under dynamic expansion but ceased to grow in conventional culture. Dynamic expansion culture fully retained the multipotent character of MSC, which could be induced to differentiate into adipogenic, chondrogenic, osteogenic, and myogenic lineages. Development of an undesired fibrogenic myofibroblast phenotype was suppressed. Hence, our novel method can rapidly provide the high number of autologous, multipotent, and nonfibrogenic MSC needed for successful regenerative medicine.
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
Corneal integrity and transparency are indispensable for good vision. Cornea homeostasis is entirely dependent upon corneal stem cells, which are required for complex wound-healing processes that restore corneal integrity following epithelial damage. Here, we found that leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is highly expressed in the human holoclone-type corneal epithelial stem cell population and sporadically expressed in the basal cells of ocular-surface epithelium. In murine models, LRIG1 regulated corneal epithelial cell fate during wound repair. Deletion of Lrig1 resulted in impaired stem cell recruitment following injury and promoted a cell-fate switch from transparent epithelium to keratinized skin-like epidermis, which led to corneal blindness. In addition, we determined that LRIG1 is a negative regulator of the STAT3-dependent inflammatory pathway. Inhibition of STAT3 in corneas of Lrig1-/- mice rescued pathological phenotypes and prevented corneal opacity. Additionally, transgenic mice that expressed a constitutively active form of STAT3 in the corneal epithelium had abnormal features, including corneal plaques and neovascularization similar to that found in Lrig1-/- mice. Bone marrow chimera experiments indicated that LRIG1 also coordinates the function of bone marrow-derived inflammatory cells. Together, our data indicate that LRIG1 orchestrates corneal-tissue transparency and cell fate during repair, and identify LRIG1 as a key regulator of tissue homeostasis.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.
Resumo:
Introduction: Accurate and reproducible tibial tunnel placement minimizing the risk of neurovascular damage is a crucial condition for successful arthroscopic reconstruction of the posterior cruciate ligament (PCL). This step is commonly performed under fluoroscopic control. Hypothesis: Performing the tibial tunnel under exclusive arthroscopic control allows accurate and reliable tunnel placement according to recommendations in the literature. Materials and Methods: Between February 2007 and December 2009, 108 arthroscopic single bundle PCL reconstructions in tibial tunnel technique were performed. The routine postoperative radiographs were screened according to previously defined quality criterions. After critical analysis, the radiographs of 48 patients (48 knees) were enrolled in the study. 10 patients had simultaneous ACL reconstruction and 7 had PCL revision surgery. The tibial tunnel was placed under direct arthroscopic control through a posteromedial portal using a standard tibial aming device. Key anatomical landmarks were the exposed tibial insertion of the PCL and the posterior horn of the medial meniscus. First, the centre of the posterior tibial tunnel outlet on the a-p view was determined by digital analysis of the postoperative radiographes. Its distance to the medial tibial spine was measured parallel to the tibia plateau. The mediolateral position was expressed by the ratio between the distance of the tunnel outlet to the medial border and the total width of the tibial plateau. On the lateral view the vertical tunnel position was measured perpendicularly to a tangent of the medial tibial plateau. All measurement were repeated at least twice and carried out by two examiners. Results: The mean mediolateral tunnel position was 49.3 ± 4.6% (ratio), 6.7 ± 3.6 mm lateral to the medial tibial spine. On the lateral view the tunnel centre was 10.1 ± 4.5 mm distal to the bony surface of the medial tibial plateau. Neurovascular damage was observed in none of our patients. Conclusion: The results of this radiological study confirm that exclusive arthroscopic control for tibial tunnel placement in PCL reconstruction yields reproducible and accurate results according to the literature. Our technique avoids radiation, facilitates the operation room setting and enables the surgeon to visualize the anatomic key landmarks for tibial tunnel placement.
Resumo:
A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]
Resumo:
The identification of endogenously produced antigenic peptides presented by MHC class I molecules has opened the way to peptide-based strategies for CTL induction in vivo. Here we demonstrate that the induction in vivo of CTL directed against naturally processed antigens can be triggered by injection of syngeneic cells expressing covalent major histocompatibility complex class I-peptide complexes. In the model system used, the induction of HLA-Cw3 specific cytotoxic T lymphocytes (CTL) in mice by cell surface-associated, covalent H-2Kd (Kd)-Cw3 peptide complexes was investigated. The Kd-restricted Cw3 peptide 170-179 (RYLKNGKETL), which mimics the major natural epitope recognized by Cw3-specific CTL in H-2d mice, was converted to a photoreactive derivative by replacing Arg-170 with N-beta-(4-azidosalicyloyl)-L-2,3-diaminopropionic acid. This peptide derivative was equivalent to the parental Cw3 peptide in terms of binding to Kd molecules and recognition by Cw3-specific CTL clones and could be cross-linked efficiently and selectively to Kd molecules on the surface of Con A-stimulated spleen cells from H-2d mice. Photocross-linking prevented the rapid dissociation of Kd-peptide derivative complexes that takes place under physiological conditions. Cultures of spleen cells or peritoneal exudate cells from mice inoculated i.p. with peptide-pulsed and photocross-linked cells developed a strong CTL response following antigenic stimulation in vitro. The cultured cells efficiently lysed not only target cells sensitized with the Cw3 170-179 peptide but also target cells transfected with the Cw3 gene. Moreover, their TCR preferentially expressed V beta 10 and J alpha pHDS58 segments as well as conserved junctional sequences, as has been observed previously in Cw3-specific CTL responses. In contrast, no Cw3-specific CTL response could be obtained in cultures derived from mice injected with Con A-stimulated spleen cells pulsed with the peptide derivative without photocross-linking.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.