926 resultados para spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar asymmetric tops has been hampered by the large number of RCS transient types, the resulting variability of the RCS patterns, and the 10³–10⁴ times larger computational effort to simulate and fit rotational Raman RCS transients. We present the rotational Raman RCS spectra of the nonpolar asymmetric top 1,4-difluorobenzene (para-difluorobenzene, p-DFB) measured in a pulsed Ar supersonic jet and in a gas cell over delay times up to ~2.5 ns. p-DFB exhibits rotational Raman transitions with ΔJ = 0, 1, 2 and ΔK = 0, 2, leading to the observation of J −, K −, A −, and C–type transients, as well as a novel transient (S–type) that has not been characterized so far. The jet and gas cell RCS measurements were fully analyzed and yield the ground-state (v = 0) rotational constants Aₒ = 5637.68(20) MHz, Bₒ = 1428.23(37) MHz, and Cₒ = 1138.90(48) MHz (1σ uncertainties). Combining the Aₒ, Bₒ, and Cₒ constants with coupled-cluster with single-, double- and perturbatively corrected triple-excitation calculations using large basis sets allows to determine the semi-experimental equilibrium bond lengths rₑ(C₁–C₂) = 1.3849(4) Å, rₑ(C₂–C³) = 1.3917(4) Å, rₑ(C–F) = 1.3422(3) Å, and rₑ(C₂–H₂) = 1.0791(5) Å.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Docetaxel is one of the most frequently used drugs to treat breast cancer. However, resistance or incomplete response to docetaxel is a major challenge. The aim of this study was to utilize MR metabolomics to identify potential biomarkers of docetaxel resistance in a mouse model for BRCA1-mutated breast cancer. METHODOLOGY High resolution magic angle spinning (HRMAS) (1)H MR spectroscopy was performed on tissue samples obtained from docetaxel-sensitive or -resistant BRCA1-mutated mammary tumors in mice. Measurements were performed on samples obtained before treatment and at 1-2, 3-5 and 6-7 days after a 25 mg/kg dose of docetaxel. The MR spectra were analyzed by multivariate analysis, followed by analysis of the signals of individual compounds by peak fitting and integration with normalization to the integral of the creatine signal and of all signals between 2.9 and 3.6 ppm. RESULTS The HRMAS spectra revealed significant metabolic differences between sensitive and resistant tissue samples. In particular choline metabolites were higher in resistant tumors by more than 50% with respect to creatine and by more than 30% with respect to all signals between 2.9 and 3.6 ppm. Shortly after treatment (1-2 days) the normalized choline metabolite levels were significantly increased by more than 30% in the sensitive group coinciding with the time of highest apoptotic activity induced by docetaxel. Thereafter, choline metabolites in these tumors returned towards pre-treatment levels. No change in choline compounds was observed in the resistant tumors over the whole time of investigation. CONCLUSIONS Relative tissue concentrations of choline compounds are higher in docetaxel resistant than in sensitive BRCA1-mutated mouse mammary tumors, but in the first days after docetaxel treatment only in the sensitive tumors an increase of these compounds is observed. Thus both pre- and post-treatment tissue levels of choline compounds have potential to predict response to docetaxel treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE This study presents the first in vivo real-time optical tissue characterization during image-guided percutaneous intervention using near-infrared diffuse optical spectroscopy sensing at the tip of a needle. The goal of this study was to indicate transition boundaries from healthy tissue to tumors, namely, hepatic carcinoma, based on the real-time feedback derived from the optical measurements. MATERIALS AND METHODS Five woodchucks with hepatic carcinoma were used for this study. The woodchucks were imaged with contrast-enhanced cone beam computed tomography with a flat panel detector C-arm system to visualize the carcinoma in the liver. In each animal, 3 insertions were performed, starting from the skin surface toward the hepatic carcinoma under image guidance. In 2 woodchucks, each end point of the insertion was confirmed with pathologic examination of a biopsy sample. While advancing the needle in the animals under image guidance such as fluoroscopy overlaid with cone beam computed tomography slice and ultrasound, optical spectra were acquired at the distal end of the needles. Optical tissue characterization was determined by translating the acquired optical spectra into clinical parameters such as blood, water, lipid, and bile fractions; tissue oxygenation levels; and scattering amplitude related to tissue density. The Kruskal-Wallis test was used to study the difference in the derived clinical parameters from the measurements performed within the healthy tissue and the hepatic carcinoma. Kurtoses were calculated to assess the dispersion of these parameters within the healthy and carcinoma tissues. RESULTS Blood and lipid volume fractions as well as tissue oxygenation and reduced scattering amplitude showed to be significantly different between the healthy part of the liver and the hepatic carcinoma (P < 0.05) being higher in normal liver tissue. A decrease in blood and lipid volume fractions and tissue oxygenation as well as an increase in scattering amplitude were observed when the tip of the needle crossed the margin from the healthy liver tissue to the carcinoma. The kurtosis for each derived clinical parameter was high in the hepatic tumor as compared with that in the healthy liver indicating intracarcinoma variability. CONCLUSIONS Tissue blood content, oxygenation level, lipid content, and tissue density all showed significant differences when the needle tip was guided from the healthy tissue to the carcinoma and can therefore be used to identify tissue boundaries during percutaneous image-guided interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has recently been reported in this journal that local fat depots produce a sizable frequency-dependent signal attenuation in magnetic resonance spectroscopy (MRS) of the brain. If of a general nature, this effect would question the use of internal reference signals for quantification of MRS and the quantitative use of MRS as a whole. Here, it was attempted to verify this effect and pinpoint the potential causes by acquiring data with various acquisition settings, including two field strengths, two MR scanners from different vendors, different water suppression sequences, RF coils, localization sequences, echo times, and lipid/metabolite phantoms. With all settings tested, the reported effect could not be reproduced, and it is concluded that water referencing and quantitative MRS per se remain valid tools under common acquisition conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two substituted acetylene compounds have been characterized from their microwave rotational spectra. In the first study, two structures of 6-methyl-3-heptyne have been determined. This compound can be thought of as an ethyl group separated from an isobutyl group by a C≡C spacer. Both structures have the ethyl and isobutyl groups eclipsed, consistent with the dominant interaction determining the orientation about the acetylene axis being the weak dispersion attraction between the end groups. One structure is with the isobutyl group in a symmetric conformation and the other with the isobutyl group asymmetric. In addition, the microwave spectrum of the butane analogue 3,5-octadiyne has been observed. This compound consists of two ethyl groups separated by two C≡C spacers. The study is still in progress, but it appears that the ethyl end groups are freely rotating. Therefore, it seems that the dispersion attractions between the end groups are too weak at this longer distance of about 7 Å. The structures of several fluorocarbons have also been studied by microwave spectroscopy. The structures of perfluoropentane and perfluorohexane have been shown to be helical, like the polymer polytetrafluoroethylene (Teflon©). The structure of perfluoropropane and two conformers of 1H-heptafluoropropane have been determined to be non-helical. It is apparent that the steric and dipole repulsions between fluorine atoms that have been attributed to the helical structure of longer fluorocarbon chains are not sufficient in a three carbon chain to cause a twist in the structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotations are an integral part of the study of rotational spectroscopy, as well as a part of group theory, hence this introduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interleaved, dual resonance, volume localization technique for $\sp1$H/$\sp{31}$P magnetic resonance spectroscopy has been designed, implemented on a 2 T imager/spectrometer, and verified with phantom studies.^ Localization techniques, including several single voxel techniques and spectroscopic imaging, were implemented, and studies were performed to compare the efficiency of each sequence of $\sp1$H/$\sp{31}$P spectral acquisitions. The sequence chosen was a hybrid of the stimulated echo single voxel technique and the spectroscopic imaging technique.^ Water suppression during the $\sp1$H spectral acquisitions was accomplished by the use of three narrow bandwidth RF saturation pulses in combination with three spoiler gradients. The spoiler gradient amplitudes were selected on the basis of a numerical solution of the Bloch equations. A post-acquisition water suppression algorithm was used to minimize any residual water signal.^ For interleaved $\sp1$H/$\sp{31}$P acquisitions, a dual resonance RF coil was constructed and interfaced to the existing RF detection system via a custom-designed dual resonance transcoupler and switching system. Programmable attenuators were incorporated to allow for changes in receiver and transmitter attenuation "on the fly".^ To provide the rapidly switched gradient fields required for the $\sp1$H/$\sp{31}$P acquisitions, an actively screened gradient coil system was designed and implemented. With this system, gradient field rise times on the order of 100 $\mu$s were obtained. These rapid switching times were necessary for minimizing intrasequence delays and for improving localization quality and water suppression efficiency.^ The interleaved $\sp1$H/$\sp{31}$P volume localization technique was tested using a two-compartment phantom. Analysis of the data showed that the spectral contamination was less than three percent. One-to-one spatial correspondence of the $\sp1$H and $\sp{31}$P spectra was verified and allowed for direct correlation of the spectral data with a standard magnetic resonance image. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

hyDRaCAT Spectral Reflectance Library for tundra provides the surface reflectance data and the bidirectional reflectance distribution function (BRDF) of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites. The aim of this dataset is the hyperspectral and spectro-directional reflectance characterization as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. The spectroscopic and field spectro-goniometric measurements were undertaken on the YAMAL2011 expedition of representative Siberian vegetation fields and on the North American Arctic Transect NAAT2012 expedition of Alaskan vegetation fields both belonging to the Greening-of-the-Arctic (GOA) program. For the field spectroscopy each 100 m2 vegetation study grid was divided into quadrats of 1 × 1 m. The averaged reflectance of all quadrats represents the spectral reflectance at the scale of the whole grid at the 10 × 10 m scale. For the surface radiometric measurements two GER1500 portable field spectroradiometers (Spectra Vista Corporation, Poughkeepsie, NY, USA) were used. The GER1500 measures radiance across the wavelength range of 350-1,050 nm, with sampling intervals of 1.5 nm and a radiance accuracy of 1.2 × 10**-1 W/cm**2/nm/sr. In order to increase the signal-to-noise ratio, 32 individual measurements were averaged per one target scan. To minimize variations in the target reflectance due to sun zenith angle changes, all measurements at one study location have been performed under similar sun zenith angles and during clear-sky conditions. The field spectrometer measurements were carried out with a GER1500 UV-VIS spectrometer The spectrogoniometer measurements were carried out with a self-designed spectro-goniometer: the Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS, patent publication number: DE 10 2011 117 713.A1). The ManTIS was equipped with the GER1500 spectrometer allowing spectro-directional measurements with up to 30° viewing zenith angle by full 360° viewing azimuth angles. Measurements in central Yamal (Siberia) at the research site 'Vaskiny Dachi' were carried out in the late summer phenological state from August 12 2011 to August 28 2011. All measurements in Alaska along the North South transect on the North Slope were taken between 29 June and 11 July 2012, ensuring that the vegetation was in the same phenological state near peak growing season.