941 resultados para sol-gel chemistry


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A metal ions (Ag, Bi, V, Mo) modified sol-gel method was used to prepare a mesoporous Ag0.01Bi0.85V0.54Mo0.45O4 catalytic membrane which was used in the selective oxidation of propane to acrolein. By optimizing the preparation parameters, a thin and perfect catalytically active membrane was successfully prepared. SEM results showed that the membrane thickness is similar to5 mum. XRD results revealed that Ag0.01Bi0.85V0.54Mo0.45O4 with a Scheelite structure, which is catalytically active for the selective oxidation of propane to acrolein, was formed in the catalytic membrane only when AgBiVMoO concentrations were higher than 40%. Catalytic reaction results demonstrated that the selective oxidation of propane could be controlled to a certain degree, such as to acrolein, in the catalytic membrane reactor (CMR) compared to the fixed bed reactor (FBR). For example, a selectivity of 54.85% for acrolein in the liquid phase was obtained in the CMR, while only 8.31% was achieved in the FBR. (C) 2003 Elsevier B.V. All rights reserved.