970 resultados para soil dissolved C pool
Resumo:
A greenhouse study was conducted to determine the number of microbial populations and activities in sewage sludge and phosphate fertilizer-amended dark red latosoil for cultivation of tomato plants. Sewage sludge was applied at doses of 0, 10, 20, 40, 80 and 160 t ha(-1), and phosphate (P2O5) at doses of 0, 100, 200, 400 and 800 kg ha(-1). The bacterial populations increased as a function of sewage sludge and phosphate application. Fungal populations were not affected by the application of phosphate alone but were increased by the application of sewage sludge. Phosphate doses higher than 100-200 kg ha(-1) in combination with sewage sludge inhibited both bacterial and fungal growth. The responses determined by microbial counts were reflected in the microbial biomass values, with a more significant effect of sewage sludge than of phosphate or of a combination of both. These results confirm the need for a carbon and energy source (represented here by sewage sludge) for microbial growth in a soil poor in organic matter. Dehydrogenase and urease activities reflected the results of the microbial populations due to the effect of sewage sludge and phosphate, but no satisfactory result was obtained for phosphatase. Urease activity was expressed by a linear regression equation as the result of the effect of sewage sludge, and by a quadratic regression equation as the result of the effect of phosphate. All parameters investigated showed a significant correlation with bacterial counts but not with fungal counts, indicating a greater effect of sewage sludge and phosphate on bacteria than on fungi.
Resumo:
Laboratory time scale experiments were conducted on soils from the Mendip Hills area, England, with the purpose of evaluating the release of Rn-222 and their parent nuclides U-238 and U-234 to the water phase and to determine the influence of parameters that can affect the geochemical behaviour of these nuclides in natural systems. The specific surface area of the samples ranged from 43.8 to 52.5 cm(2) g(-1), where the particle size for all soil horizons is lognormally distributed, with modal values of the particle radius undersize ranging from 107 up to 203 mu m. The values for the released radon were between 26 and 194 pCi, which allowed to estimate emanation coefficients for these materials between 0.1 and 0.2, within the context of other values reported elsewhere. Soils derived from Carboniferous limestone and characterized by higher pH, exchangeable calcium, and the presence of U, but with a lower U-231/U-238 activity ratio, yielded the highest values for released Rn; however, this trend was not observed for dissolved U and its respective U-234/U-238 activity ratio, when considering the less aggressive etchant. Uranium is mobilized from rock matrix to A and B horizons in the analysed soil profiles, where its enrichment is about 10 times higher in soils derived from Carboniferous limestone. These data also permitted an evaluation of a theoretical model for the generation of Rn in soils and its transfer to water, in order to interpret the radioactivity due to this gas in groundwaters from the Mendip Hills district, England. (C) 1999 Elsevier B.V. B.V. All lights reserved.
Resumo:
We compared the antigenic characteristics of two thermo-dependent dimorphic fungi isolated from soil in Botucatu, an endemic area of paracoccidioidomycosis (PCM) and Paracoccidioides brasiliensis. The soil isolates grew as cerebriform colonies at 37 degrees C (yeast form) and as cottonous colonies at 25 degrees C (mycelial form). No pathogenicity for ddY mice or hamsters were observed. In immunodiffusion test, there were precipitation bands between the 2 soil isolates and pooled PCM patient sera. There were also common precipitation bands at 21, 50 and 58 kDa between the soil isolates antigens and PCM patient sera by Western-blotting, but no gp43 kDa band. No gene for gp43 kDa protein was detected in the soil isolates by PCR. The fact that these isolates were obtained from an endemic area of PCM and there were some antigenic similarities between the soil isolates and P. brasiliensis in immunodiffusion test and Western-blotting may have some importance in epidemiological surveys done with paracoccidioidin as well interfering with the immune response of the exposed population.
Resumo:
This work consisted of determining the degree of humification of humic substances (HS) extracted from six different Amazonian soils collected from flooded and unflooded regions at different depths (0-10, 10-20, 20-40, and 60 cm). The humic substances were extracted according to procedures recommended by the International Humic Substances Society and characterized using elemental analysis, electron paramagnetic resonance (EPR), and fluorescence spectroscopy. The findings on semiquinone-type free radical concentrations in HS showed variations of 0.10-7.55x10(18) spins g(-1) of carbon (g C)(-1), indicating considerable differences between the humification levels of HS extracted from Amazonian soils. The results showed an average of 1.71 +/- 0.04 x 10(18) spins (g C)(-1), which is congruent with other data reported in the literature on Tropical soils. It was found that, on average, HS extracted from flooded soil contained higher semiquinone-type free radical concentrations than HS extracted from unflooded soils, indicating the influence of humidity in the humification process of organic matter. The humification process varies according to the profile, and the 10-20- and 0-10-cm profiles generally showed more humified HS. The degree of humification of the HS studied here displayed a similar behavior when exposed to fluorescence (excitation at 465 nm) and EPR (R=0.85). However, the low correlation between the C/H, C/O, and C/N atomic ratios and the semiquinone-type free radical concentration/fluorescence intensities indicated that data obtained by these techniques with regard to the degree of humification of HS may lead to different conclusions. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Soil surface roughness is known to influence water infiltration, runoff and erosion. Soil surface roughness changes with management and weather and its mathematical description still remains an important issue. The main objective of this study was to investigate the effect of tillage on the two fractal indices, fractal dimension, D, and crossover length, 1, currently used in characterizing soil surface microrelief. The statistical index random roughness, RR, was also assessed. Field experiments were done on an Alfisol located at Rio Grande do Sul State (Brazil). Two tillage treatments (conventional versus direct drilling) were tested. The soil surface microrelief was assessed by point elevation measurements in 16 plots for each treatment. The sampling scheme was a square grid with 20 x 20 mm between point spacing and the plot size was 280 x 280 mm, so that each data set consisted of 225 individual elevation points. All indices were calculated after trend removal, both by slope correction, i.e., oriented microrelief, and by slope plus tillage marks correction, i.e., random microrelief. The implemented algorithm for estimating D and 1 consisted in evaluating the roughness around the local root mean square deviation (RMS) of the point elevation values. Irrespective of tillage treatment and detrending procedure, fractal behavior extended only over a bounded range of scales, from 40 to 100 mm, due to the experimental setup. In these conditions, assessing fractal indices was not always straightforward. The statistical index RR and the fractal index I were significantly different between tillage treatments for oriented and random surface conditions. D values of random soil surfaces were not affected by tillage treatment, whereas D values of oriented microrelief were significantly lower in the direct drilled plots. Removal of tillage marks trend resulted in a significant increase in D values. Within each tillage treatment, 1 and D were significantly correlated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Determining the variability of carbon dioxide emission from soils is an important task as soils are among the largest sources of carbon in biosphere. In this work the temporal variability of bare soil CO2 emissions was measured over a 3-week period. Temporal changes in soil CO2 emission were modelled in terms of the changes that occurred in solar radiation (SR), air temperature (T-air), air humidity (AR), evaporation (EVAP) and atmospheric pressure (ATM) registered during the time period that the experiment was conducted. The multiple regression analysis (backward elimination procedure) includes almost all the meteorological variables and their interactions into the final model (R-2 = 0.98), but solar radiation showed to be the one of the most relevant variables. The present study indicates that meteorological data could be taken into account as the main forces driving the temporal variability of carbon dioxide emission from bare soils, where microbial activity is the sole source of carbon dioxide emitted. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The importance of soil organic matter functions is well known, but structural information, chemical composition and changes induced by anthropogenic factors such as tillage practices are still being researched. In the present paper were characterized Brazilian humic acids (HAs) from an Oxisol under different treatments: conventional tillage/maize-bare fallow (CT1); conventional tillage/maize rotation with soybean-bare fallow (CT2)-, no-till/maize-bare fallow (NT1); no-till/maize rotation with soybean-bare fallow (NT2); no-till/maize-cajanus (NT3) and no cultivated soil under natural vegetation (NC). Soil HA samples were analyzed by electron paramagnetic resonance (EPR), solid-state C-13 nuclear magnetic resonance (C-13 NMR), Fourier transform intra-red (FTIR) and UV-Vis fluorescence spectroscopies and elemental analysis (CHNS). The FTIR spectra of the HAs were similar for all treatments. The level of semiquinone-type free radical determined from the EPR spectra was lower for treatments no-till/maize-cajanus (NT3) and noncultivated soil (1.74 X 10(17) and 1.02 x 10(17) spins g(-1) HA, respectively), compared with 2.3 X 10(17) spins g(-1) HA for other soils under cultivation. The percentage of aromatic carbons determined by C-13 NMR also decreases for noncultivated soil to 24%, being around 30% for samples of the other treatments. The solid-state C-13 NMR and EPR spectroscopies showed small differences in chemical composition of the HA from soils where incorporation of vegetal residues was higher, showing that organic matter (OM) formed in this cases is less aromatic. The fluorescence intensities were in agreement with the percentage of aromatic carbons, determined by NMR (r = 0.97 P < 0.01) and with semiquinone content, determined by EPR (r = 0.97 P < 0.01). No important effect due to tillage system was observed in these areas after 5 years of cultivation. Probably, the studied Oxisol has a high clay content that offers protection to the clay-Fe-OM complex against strong structural alterations. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The present study evaluated in vitro susceptibility testing of dermatophytes isolates from healthy cattle and soil samples against three antifungal agents and three topical veterinarian drugs. Itraconazole and terbinafine showed a higher in vitro fungicidal activity than fluconazole. The veterinarian drugs LEPECID (R) and iodine 5% were more active in vitro than the UNGUENTO (R) spray. All drugs showed fungicidal activity against Microsporum gypseum, and they may be considered as efficient agents for the topical treatment of dermatophytoses in cattle.
Resumo:
The efficiency of different methods for the decontamination of glassware used for the analysis of dissolved organic carbon (DOC) was tested using reported procedures as well as new ones proposed in this work. A Fenton solution bath (1.0 mmol L-1 Fe2+ and 100 mmol L-1 H2O2) for 1 h or for 30 min employing UV irradiation showed to combine simplicity, low cost and high efficiency. Using the optimized cleaning procedure, the DOC for stored UV-irradiated ultrapure water reached concentrations below the limit of detection (0.19 mu mol C L-1). Filtered (0.7 mu m) rain samples maintained the DOC integrity for at least 7 days when stored at 4 degrees C. The volatile organic carbon (VOC) fraction in the rain samples collected at two sites in São Paulo state (Brazil) ranged from 0% to 56% of their total DOC content. Although these high-VOC concentrations may be derived from the large use of ethanol fuel in Brazil, our results showed that when using the high-temperature catalytic oxidation technique, it is essential to measure DOC rather than non-purgeble organic carbon to estimate organic carbon, since rainwater composition can be quite variable, both geographically and temporally. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The degradation of DDT [1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane] and DDE [2,2-bis(4-chlorophenyl)-1,1-dichloroethylene] in highly and long-term contaminated soil using Fenton reaction in a slurry system is studied in this work. The influence of the amount of soluble iron added to the slurry versus the mineral iron originally present in the soil, and the influence of H2O2 concentration on the degradation process are evaluated. The main iron mineral species encountered in the soil, hematite (Fe2O3), did not show catalytic activity in the decomposition of H2O2, resulting in low degradation of DDT (24%) and DDE (4%) after 6 h. The addition of soluble iron (3.0 mmol L-1) improves the reaction reaching 53% degradation of DDT and 46% of DDE. The increase in iron concentration from 3.0 to 24 mmol L-1 improves slightly the degradation rate of the contaminants. However, similar degradation percentages were obtained after 24 h of reaction. It was observed that low concentrations of H2O2 were sufficient to degrade around 50% of the DDT and DDE present in the soil, while higher degradation percentages were achieved only with high amounts of this reagent (1.1 mol L-1). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Viable cells immobilized in inert supports are currently studied for a wide range of bioprocesses. The intrinsic advantages of such systems over suspended cultures incite new research, including studies on fundamental aspects as well as on the industrial viability of these non-conventional processes. In aerobic culture of filamentous fungi, scale-up is hindered by oxygen mass transfer limitation through the support material and bioprocess kinetics must be studied together with mass transfer limitation. In this work, experimental and simulated data of cephalosporin C production were compared. Concentrations in the bulk fermentation medium and cellular mass profiles inside the bioparticles are focused. Immobilized cells were used in a tower bioreactor, operated in fed-batch mode. To describe the radial variation of oxygen concentration within the pellet, a dead core model was used. Despite the extremely low sugar concentrations, bioreaction rates in the pellets were limited by the dissolved oxygen concentration. Cell growth occurs only in the outer layers, a result also confirmed by scanning electron microscopy. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.
Resumo:
The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H2SO4 (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. on the other hand, oxidation through dissolved oxygen takes place when concentrated H2SO4 is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H2SO4 (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H2SO4 was eliminated and advantageously replaced by a less harmful mixture of HCl and H2O2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The modified Cam - Clay model was used to model experimental results of a saturated residual sandy soil from Sao Carlos - SP. Triaxial compression tests were performed using Bishop - Wesley cell with internal transducers to measure axial and radial strains. It was observed that the model fairly fitted experimental results, specially the principal stress difference at critical state. In general it was observed a good qualitative agreement between experimental and predicted strain values, considering compression or expansion of the samples. However, in all the stress path used, but 100 degrees and 140 degrees, the model yielded strains larger than that measured in the tests.