968 resultados para semiconductor III-V material


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon carbide (SiC) is recently receiving increased attention due to its unique electrical and thermal properties. It has been regarded as the most appropriate semiconductor material for high power, high frequency, high temperature, and radiation hard microelectronic devices. The fabrication processes and characterization of basic device on 6H-SiC were systematically studied. The main works are summarized as follows:The homoepitaxial growth on the commercially available single-crystal 6H-SiC wafers was performed in a modified gas source molecular beam epitaxy system. The mesa structured p(+)n junction diodes on the material were fabricated and characterized. The diodes showed a high breakdown voltage of 800 V at room temperature. They operated with good rectification characteristics from room temperature to 673 K.Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes were fabricated. They showed good rectification characteristics from room temperature to 473 K. Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800 V.n-Type 6H-SiC MOS capacitors were fabricated and characterized. Under the same growing conditions, the quality of polysilicon gate capacitors was better than Al. In addition, SiC MOS capacitors had good tolerance to gamma rays. (C) 2002 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single delta -doped InGaAs/AlGaAs pseudomorphic HEMT structure materials were grown by molecular beam epitaxy. The photoluminescence spectra of the materials were studied. There are two peaks in the photoluminescence spectra of the materials, corresponding to two sub energy levels of InGaAs quantum well. The ratio of the two peak's intensity was used as criterion to optimize the layer structures of the materials. The material with optimized layer ;tructures exhibits the 77 It mobility and two-dimensional electron gas density of 16 500 cm(2)/Vs and 2.58 x 10(12) cm(-2) respectively, and the 300 K mobility and two-dimensional electron gas density of 6800 cm(2)/Vs and 2.55 x 10(12) cm(-2) respectively. The pseudomorphic HEMT devices with gate length of 0.2 mum were fabricated using this material. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of the flat band voltage roll-off (V-FB roll-off) in metal gate/high-k/ultrathin-SiO2/Si metal-oxide-semiconductor stacks is analyzed and a model describing the role of the dipoles at the SiO2/Si interface on the V-FB sharp roll-off is proposed. The V-FB sharp roll-off appears when the thickness of the SiO2 interlayer diminishes to below the oxygen diffusion depth. The results derived using our model agree well with experimental data and provide insights to the mechanism of the V-FB sharp roll-off.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel system design that can generate the optimized wavelength-tunable optical pulse streams from an uncooled gain-switched Fabry-Perot semiconductor laser using an optical amplifier as external light source. The timing jitter of gain-switched laser has been reduced from about 3 ps to 600 fs and the pulse width has been optimized by using our system. The stability of the system was also experimentally investigated. Our results show that an uncooled gain-switched FP laser system can feasibly produce the stable optical pulse trains with pulse width of 18 ps at the repetition frequency of 5 GHz during 7 h continuous working. We respectively proved the system feasibility under 1 GHz, 2.5 GHz and 5 GHz operation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dugdale-Barenblatt model is used to analyze the adhesion of graded elastic materials at the nanoscale with Young's modulus E varying with depth z according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remains a constant, where E-0 is a referenced Young's modulus, k is the gradient exponent and c(0) is a characteristic length describing the variation rate of Young's modulus. We show that, when the size of a rigid punch becomes smaller than a critical length, the adhesive interface between the punch and the graded material detaches due to rupture with uniform stresses, rather than by crack propagation with stress concentration. The critical length can be reduced to the one for isotropic elastic materials only if the gradient exponent k vanishes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental works devoted to the phenomena of mixing observed at metallic multilayers Ni/Si irradiated by swift heavy ions irradiations make it necessary to revisit the insensibility of crystalline Si under huge electronic excitations. Knowing that Ni is an insensitive material, such observed mixing would exist only if Si is a sensitive material. In order to extend the study of swift heavy ion effects to semiconductor materials, the experimental results obtained in bulk silicon have been analyzed within the framework of the inelastic thermal spike model. Provided the quenching of a boiling ( or vapor) phase is taken as the criterion of amorphization, the calculations with an electron-phonon coupling constant g(300 K) = 1.8 x 10(12) W/cm(3)/K and an electronic diffusivity D-e(300 K) = 80 cm(2)/s nicely reproduce the size of observed amorphous tracks as well as the electronic energy loss threshold value for their creation, assuming that they result from the quenching of the appearance of a boiling phase along the ion path. Using these parameters for Si in the case of a Ni/Si multilayer, the mixing observed experimentally can be well simulated by the inelastic thermal spike model extended to multilayers, assuming that this occurs in the molten phase created at the Ni interface by energy transfer from Si. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the target to design and develop new functionalized green triplet light emitters that possess distinctive electronic properties for robust and highly efficient phosphorescent organic light-emitting diodes (PHOLEDs), a series of bluish-green to yellow-green phosphorescent tris-cyclometalated homoleptic iridium(III) complexes [Ir(ppy-X)(3)] (X=SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph, Hppy=2-phenylpyridine) have been synthesized and fully characterized by spectroscopic, redox, and photophysical methods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the bifunctional ligand, 8-hydroxyquinoline-functionalized organosilane (Q-Si), the new mesoporous material Q-MCM-41 covalently bonded with 8-hydroxyquinoline was synthesized. Through the ligand exchange reaction, the new near-infrared (NIR) luminescent mesoporous LnQ(3)-MCM-41 (Ln = Er, Nd, Yb) materials were prepared by linking the lanthanide quinolinate complexes to the ordered mesoporous Q-MCM-41 material. The LnQ(3)-MCM-41 materials were characterized by powder X-ray diffraction and N-2 adsorption/desorption, and they all show the characteristic mesoporous structure of MCM-41 with highly uniform pore size distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rectangular AgIn(WO4)(2) nanotubes with a diameter range of 80 to 120 nm and length up to 2 mu m have been synthesized by a hydrothermal method. These nanotubes exhibit interesting white light emissions when using 320 nm as the excitation wavelength. A photocatalytic reaction for water decomposition to evolve K, was performed under UV irradiation, and the rate of H, evolution is nearly seven times that of the sample prepared by a solid-state reaction, which shows much higher photocatalytic activities compared with their bulk counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel mesoporous material covalently bonded with 8-hydroxyquinoline (HQ) was synthesized (designated as Q-SBA-15). The 5-formyl-8-hydroxyquinoline grafted to.(3-aminopropyl)triethoxysilane, that is, alkoxysilane modified 8-hydroxyquinoline (Q-Si), was used as one of the precursors for the preparation of the Q-SBA-15 material. On the basis of the other function of the Q-Si of coordinating to lanthanide (Ln) ions, for the first time, the LnQ(3) complexes (Ln = Er, Nd, Yb) have been covalently bonded to the SBA-15 materials.