919 resultados para polyether urethane polymer electrolytes
Resumo:
A copper-strontium heterometallic coordination polymer was synthesized and characterized by elemental analysis and IR spectra. The crystal structure was determined by single-crystal X-ray diffraction analyses. The title complex is a 2 D coordination polymer with the chemical formula [[(CuL)(2)Sr (H2O) center dot Sr-2 ((HO)-O-2)(7)]center dot 2H(2)O center dot 0.5CH(3)OH](n), where H4L = N-(2-hydroxybenzamido)-N'-(3-carboxylsalicylidene) ethylenediamine. Its structural unit is comprised of two adjacent units, which polymerized with each other to form a new layered heterometallic coordination polymer.
Resumo:
In the present review, the authors do not try to provide a comprehensive review of researches on polymer/clay nanocomposites (PCNs), but some examples to demonstrate different exfoliation processes of the clay in various polymer matrixes and the dispersed state of clay. Interaction between polymers and layered silicates plays an important role in adjusting the exfoliation process of layered silicates and the microstructure of polymer nanocomposites. Properties of polymer/layered silicate nanocomposites mainly depend on the dispersed state of layered silicates. The authors will also address the outline of the present research in the direction of PCNs including the discussion of technical problems and their possible solutions.
Resumo:
A novel wide-bandgap conjugated polymer (PDHFSCHD) consisting of alternating dihexylfluorene and rigidly twisted biphenyl units has been synthesized. The new fluorene-based copolymer composed of rigid twisting segments in the main-chain exhibits an optical bandgap of as high as 3.26 eV, and a highly efficient ultraviolet emission with peaks at 368 nm and 386 nm. An electroluminescence device from PDHFSCHD neat film as an active layer shows UV emission which peaks at 395 nm with a turn on voltage below 8 V By optimizing the device conditions, a peak EL quantum efficiency of 0.054% and brightness of 10 cd.m(-2) was obtained. Furthermore, blending a poly(dihexylfluorene) in the PDHFSCHD host gave pure blue emission peaking at 417 nm, and 440 nm without long wavelength emission from aggregated species. Efficient energy transfer from PDHFSCHD to PDHF was demonstrated in these blended systems. Depressed chain-aggregation of PDHF in the PDHFSCHD host can correspond to pure blue emission behaviors.