956 resultados para oxygenated hydrocarbons
Resumo:
O efeito cicatrizante do hidrocarboneto alifático foi pesquisado através da aplicação diária em feridas cutâneas, cirurgicamente provocadas, em roedores da espécie Calomys callosus. As feridas dos animais foram analisadas sob os aspectos macroscópicos e histológicos transcorridos 3, 7, 14 e 21 dias de tratamento e comparado com o uso de solução fisiológica a 0,9%. O hidrocarboneto alifático antecipou a cicatrização ao diminuir a umidade, aumentar a formação do tecido de granulação e a neovascularização, conduzindo à reepitelização.
Resumo:
Recognizing the need to preserve a national ethnic minority, the Constitution, inspired by the pluralistic values of the Constitutional Law State, stipulated a series of rights and guarantees for the conservation of indigenous cultural singularity, disciplining in article 231 the Indians right to maintain their social organization, customs, languages, beliefs and traditions, as well as safeguarding the rights to the lands they traditionally occupy, and the exclusive use of the wealth existing in them, premise of ensuring their physical and cultural continuity, breaking decisively with the paradigm the assimilation of the Indian national civilization. However, despite the Indian policy of ethnic and cultural preservation, the Constitution allowed the exploitation of minerals in aboriginal territory, incorporated herein hydrocarbons, provided they meet certain predetermined requirements, leaving it to the legislature the discipline of ordinary matter. However, this law has not yet been published, with some projects in the National Congress, leaving thus precluding the indigenous subsurface oil exploration until the enactment of enabling legislation. Meanwhile, this paper carries out an integrated analysis of the constitutional protection of ethnic and cultural uniqueness of indigenous peoples, Convention Nº 169 of the International Labour Organization and the bill presented by Deputy Eduardo Valverde, in an attempt to consolidate sustainable development practices in the sector, through developing a system of social and environmental responsible oil exploration, aligning with national energy needs to maintain a balanced environment and preservation of socio-cultural organization of a minority so weakened and beaten over five centuries of domination
Resumo:
The vehicles are the main mobile sources of carbon monoxide (CO) and unburned hydrocarbons (HC) released into the atmosphere. In the last years the increment of the fleet of vehicles in the municipal district of Natal-RN it is contributing to the increase of the emissions of those pollutants. The study consisted of a statistical analysis of the emissions of CO and HC of a composed sample for 384 vehicles with mechanization Gasoline/CNG or Alcohol/Gasoline/CNG of the municipal district of Natal-RN. The tests were accomplished in vehicles submitted to Vehicular Safety's Inspection, in the facilities of INSPETRANS, Organism of Vehicular Inspection. An partial gases analyzer allowed to measure, for each vehicle, the levels of CO and HC in two conditions of rotation of the motor (900 and 2500 rpm). The statistical analysis accomplished through the STATISTICA software revealed a sensitive reduction in the efficiency of the converters catalytic after 6 years of use with emission average it is of 0,78% of CO and 156 (ppm) of HC, Which represents approximately 4 (four) times the amount of CO and the double of HC in comparison with the newest vehicles. The result of a Student s t-test, suggests strongly that the average of the emissions of HC (152 ppm), at 900 rpm, is 40% larger than at 2500 rpm, for the motor without load. This result reveals that the efficiency of the catalytic conversion is limited kinetically in low engine speeds. The Study also ends that when comparing the emissions of CO and HC considering the influence of the fuels, it was verified that although the emissions of CO starting from CNG are 62% smaller than arising from the gasoline, there are not significant differences among the emissions of HC originating from of CNG and of the gasoline. In synthesis, the results place the current criteria of vehicular inspection, for exhaust gases, in doubt, leading the creation of emission limits of pollutant more rigorous, because the efficiency of the converters catalytic is sensibly reduced starting from 6 years of use. It is also raised the possibility of modifications in the test conditions adopted by the current norms, specifically in the speed engine, have seen that in the condition without load the largest emission indexes were registered in slow march. That fact that allows to suggest the dismissal of the tests in high speed engine, reducing the time of inspection in half and generating economy of fuel
Resumo:
This research this based on the seminar on Use of Natural Fluids in Refrigeration and Air-Conditioning Systems conducted in 2007 in Sao Paulo. The event was inserted in the National Plan for Elimination of CFCs, coordinated by the Ministry of Environment and implemented by the United Nations Development Programme (UNDP). The objective of this research is analyze the performance of the hydrocarbons application as zeotropic mixtures in domestic refrigerator and validate the application of technical standards for pull down and cycling (on-off) tests to the mixture R290/R600a (50:50) in domestic refrigerator. It was first developed an computational analysis of R290/R600a (50:50) compared to R134a and other mass fractions of the hydrocarbons mixtures in the standard ASHRAE refrigeration cycle in order to compare the operational characteristics and thermodynamic properties of fluids based on the software REFPROP 6.0. The characteristics of the Lorenz cycle is presented as an application directed to zeotropic mixtures. Standardized pull down and cycling (on-off) tests were conducted to evaluate the performance of the hydrocarbons mixture R290/R600a (50:50) as a drop-in alternative to R134a in domestic refrigerator of 219 L. The results showed that the use of R290/R600a (50:50) with a charge of refrigerant reduced at 53% compared to R134a presents reduced energy performance than R134a. The COP obtained with hydrocarbon mixture was about 13% lower compared to R134a. Pull down times in the refrigerator compartments for fluids analyzed were quite close, having been found a 4,7% reduction in pull down time for the R290/R600a compared to R134a, in the freezer compartment. The data indicated a higher consumption of electric current from the refrigerator when operating with the R290/R600a. The values were higher than about 3% compared to R134a. The charge of 40 g of R290/R600a proved very low for the equipment analyzed
Resumo:
From what was stated in the Montreal Protocol, the researchers and refrigeration industry seek substitutes for synthetic refrigerants -chlorofluorocarbons (CFCs) and HCFCs (HCFC) - that contribute to the depletion of the ozone layer. The phase-out of these substances was started using as one of the replacement alternatives the synthetic fluids based on hydro fluorocarbons (HFCs) that have zero potential depletion of the ozone layer. However, contribute to the process of global warming. HFC refrigerants are greenhouse gases and are part of the group of gases whose emissions must be reduced as the Kyoto Protocol says. The hydrocarbons (HC's), for not contribute to the depletion of the ozone layer, because they have very low global warming potential, and are found abundantly in nature, has been presented as an alternative, and therefore, are being used in new home refrigeration equipment in several countries. In Brazil, due to incipient production of domestic refrigerators using HC's, the transition refrigerants remain on the scene for some years. This dissertation deals with an experimental evaluation of the conduct of a drinking fountain designed to work with HFC (R-134a), operating with a mixture of HC's or isobutane (R-600a) without any modification to the system or the lubricating oil. In the refrigeration laboratory of Federal University of Rio Grande do Norte were installed, in a drinking fountain, temperature and pressure sensors at strategic points in the refrigeration cycle, connected to an acquisition system of computerized data, to enable the mapping and thermodynamics analysis of the device operating with R-134a or with a mixture of HC's or with R-600a. The refrigerator-test operating with the natural fluids (mixture of HC's or R-600a) had a coefficient of performance (COP) lower than the R-134a
Resumo:
Petroleum is a complex combination of various classes of hydrocarbons, with paraffinic, naphtenic and aromatic compounds being those more commonly found in its composition. The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, enhanced recovery methods are cited in applications where conventional techniques have proven to be little effective. The injection of surfactant solutions as an enhanced recovery method is advantageous in that surfactants are able to reduce the interfacial tensions between water and oil, thus augmenting the displacement efficiency and, as a consequence, increasing the recovery factor. This work aims to investigate the effects of some parameters that influence the surfactant behavior in solution, namely the type of surfactant, the critical micelle concentration (CMC) and the surface and interface tensions between fluids. Seawater solutions containing the surfactants PAN, PHN and PJN have been prepared for presenting lower interfacial tensions with petroleum and higher stability under increasing temperature and salinity. They were examined in an experimental apparatus designed to assess the recovery factor. Botucatu (Brazil) sandstone plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The plugs had porosity between 29.6 and 32.0%, with average effective permeability to water of 83 mD. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater
Resumo:
Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents in its composition gaseous contaminants such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). Hydrogen sulfide, which commonly occurs in oil and gas exploration and production activities, besides being among the gases that are responsible by the acid rain and greenhouse effect, can also cause serious harm to health, leading even to death, and damages to oil and natural gas pipelines. Therefore, the removal of hydrogen sulfide will significantly reduce operational costs and will result in oil with best quality to be sent to refinery, thereby resulting in economical, environmental, and social benefits. These factors highlight the need for the development and improvement of hydrogen sulfide sequestrating agents to be used in the oil industry. Nowadays there are several procedures for hydrogen sulfide removal from natural gas used by the petroleum industry. However, they produce derivatives of amines that are harmful to the distillation towers, form insoluble precipitates that cause pipe clogging and produce wastes of high environmental impact. Therefore, the obtaining of a stable system, in inorganic or organic reaction media, that is able to remove hydrogen sulfide without forming by-products that affect the quality and costs of natural gas processing, transport and distribution is of great importance. In this context, the evaluation of the kinetics of H2S removal is a valuable procedure for the treatment of natural gas and disposal of the byproducts generated by the process. This evaluation was made in an absorption column packed with Raschig ring, where natural gas with H2S passes through a stagnant solution, being the contaminant absorbed by it. The content of H2S in natural gas in column output was monitored by an H2S analyzer. The comparison between the obtained curves and the study of the involved reactions have not only allowed to determine the efficiency and mass transfer controlling step of the involved processes but also make possible to effect a more detailed kinetic study and evaluate the commercial potential of each reagent
Resumo:
This work aims at the implementation and adaptation of a computational model for the study of the Fischer-Tropsch reaction in a slurry bed reactor from synthesis gas (CO+H2) for the selective production of hydrocarbons (CnHm), with emphasis on evaluation of the influence of operating conditions on the distribution of products formed during the reaction.The present model takes into account effects of rigorous phase equilibrium in a reactive flash drum, a detailed kinetic model able of predicting the formation of each chemical species of the reaction system, as well as control loops of the process variables for pressure and level of slurry phase. As a result, a system of Differential Algebraic Equations was solved using the computational code DASSL (Petzold, 1982). The consistent initialization for the problem was based on phase equilibrium formed by the existing components in the reactor. In addition, the index of the system was reduced to 1 by the introduction of control laws that govern the output of the reactor products. The results were compared qualitatively with experimental data collected in the Fischer-Tropsch Synthesis plant installed at Laboratório de Processamento de Gás - CTGÁS-ER-Natal/RN
Resumo:
Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented
Resumo:
The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)
Resumo:
This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment
Resumo:
The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended
Resumo:
Biosurfactants are amphiphilic molecules synthesized by microorganisms such as bacteria, yeast or filamented fungi cultivated in various carbon sources among sucrose and hydrocarbons. These molecules are composed by a hydrophilic and hydrophobic part. They operate mostly at interfaces of fluids of different polarities. Because of this characteristic, they are potentially employed in numerous industries, such as the textile, medical, cosmetics, food and mainly in the petrochemical ones. Therefore industry has interest in developing new biosurfactant production processes in high scale, in order to become them economically competitive when compared to synthetic biosurfactants. This work aims to evaluate the biosurfactant production applying a non-conventional substrate sugar cane molasses proceeding from the sugar industry thus reducing the production costs. The strain identified as AP029/GLIIA, isolated from oil wells in Rio Grande do Norte state and used in these experiments belongs to the culture collection of Antibiotics Department of UFPE. The fermentation were carried out using different conditions according to a factorial planning 24 with duplicate at center point, in which the studied factors were molasse concentration, nitrate concentration, agitation and aeration ratio. The experiments were performed in a shaker at 38ºC of temperature. Samples were withdrawn in regular periods of time of up to 72 hours of fermentation in order to analyze substrate consumption, cellular concentration, superficial tension, critical micelle dilution (CMD-1 e CMD-2) as well as extracelullar protein production. The results showed a production of 3,480 g/L of biomass, a reduction of 41% on superficial tension, 67% of substrate consumption and 0,2805 g/L of extracellular protein
Resumo:
In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer s ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells