973 resultados para oxidation catalysis
Resumo:
The effects of chlorine on three kinds of aromatic polyamides: those not containing a substituent, those containing substituents, and those containing heterocyclic aromatic rings, were studied. The correlations between the chemical structures of polyamides and the reactivity to hypochlorous acid were examined by IR and C-13 solid-state NMR spectra before and after chlorination. It was found that the chlorination of polyamides depends not only on their chemical structures but also on chlorination conditions such as pH value and reaction time. Their response to chlorination corresponds to four types: ring-chlorination, no reaction, N-chlorination, and chain cleavage. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Superconductor mixed oxides are often used as catalysts at high temperature in gas-solid phase oxidations and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of La2-xSrxCuO4+/-lambda (x = 0, 0.1, 0.7, 1) mixed oxides in phenol hydroxylation at lower temperatures are studied, and we find that the value of x has a significant effect on catalytic activity: the lower its value, the higher the catalytic activity; a mechanism is proposed to explain the experimental phenomena.
Resumo:
The synthesis is described of some aromatic polyamides based on unsubstituted, and methyl-, carboxy-, and sulfo-substituted diamines by interfacial polycondensation. Some of them are crosslinked and some of them contain heterocyclic aromatic rings. Their chemical structures are characterized by IR and C-13 solid-state NMR spectra and the spectra are interpreted. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 were prepared and used as catalysts for the direct decomposition of NO. The catalysts were characterized by means of XRD, XPS, O-2-TPD, NO-TPD and chemical analysis. By comparing the physico-chemical properties and catalytic activity for NO decomposition, a conclusion could be drawn as follows. The direct decomposition of NO over perovskite and related mixed oxide catalysts follows a redox mechanism. The lower valent metal ions Ni2+ and disordered oxygen vacancies seem to be the active sites in the redox process. The oxygen vacancy plays an important role favorable for the adsorption and activation of NO molecules on one hand and on the other hand for increasing the mobility of lattice oxygen which is beneficial to the reproduction of active sites. The presence of oxygen vacancies is one of the indispensable factors to give the mixed oxides a steady activity for NO decomposition.
Resumo:
A series of samples having the composition of La2-xSrxNiO4(0 less than or equal to x less than or equal to 1) were prepared and used as catalysts for NH3 oxidation. It was found that the La and oxygen vacancies exist in the La2-xSrxNiO4-lambda(0 less than or equal to x less than or equal to 1). The unit cell volume decreases with the increase of x. For bath c and a parameters there appeared a turning point at x = 0.5. Doping with a lower valence cation Sr2+ in the case of La2NiO4 resulted in an increase of Ni3+, consequently the formation of oxygen vacancies, the increase of reducing ability and the increase of catalytic activity. In the oxygen TPD of La2-xSrxNiO4(0 less than or equal to x less than or equal to 1) appeared three peaks, the alpha' peak at about 400K was attributed to the surplus oxygen desorption, the a peak at 700K which approaches to a maxium at x = 0.6 was attributed to the oxygen adsorbed at oxygen vacancies. The beta peak at about 1000K which depends closely on the x and favors the catalytic activity was attributed to the reduction of Ni3+. The catalytic activity of La-2-x SrxNiO4 mixed oxides in the NH3 oxidation in general could be attributed to the extent of the redox reaction: 2Ni(2+) + O-2 + V-0(..) reversible arrow 2Ni(3+) + 20(-) where V-0(..) representes the oxygen vacancies and O- the oxygen species adsorbed at the vacancies.
Resumo:
MCM-41 mesoporous molecular sieve and iron(II)-Phen/MCM-41 have been prepared and characterized by XRD, IR, NH3-TPD, BET and UV-Vis. The iron(II)-Phen/MCM-41 molecular sieve + 30% H2O2 system is capable of performing hydroxylation of phenol.
Resumo:
The chemiluminescence (CL) emission from three kinds of polyethylene, HDPE, LLDPE and LDPE, which had been exposed to 80 kGy dose from Co-60 in both air and nitrogen, has been examined. CL measurement was done under both nitrogen and oxygen atmosphere. The results show that the CL emission from irradiated samples does not result from irradiation itself, but from the oxidation reactions occurring during and after irradiation. Addition of 1 phr of an antioxidant, Irganox 1010, can effectively inhibit the radiation induced oxidation in LLDPE and LDPE. In the case of HDPE, however, it was found that pure HDPE has the best resistance to radiation-induced oxidation of the polymers examined in this work. However, incorporation of Irganox 1010 was found to have not only a stabilizing effect against radiation induced oxidation, but also to promote the oxidation in some cases.
Resumo:
Superconductor Y-Ba-Cu-O mixed oxides were synthesized and their catalysis in phenol hydroxylation was studied too. Results show that, Y2BaCuO5 has better activity than that of YBa2Cu3O7-x, With the catalysis study of another mixed oxide La2CuO4 a conclusion that AO structure unit is the key for mixed oxides to have high activity in phyenol hydroxylation was drawn. Meanwhile, the effects of reaction temperature, medium and medium (water) pH on phenol hydroxylation catalyzed by Y2BaCuO5 and the stability of the mixed oxides were also studied.
Resumo:
A systematic study has been made for the electrochemical oxidation reaction of biliverdin (BV) in pure dimethylformamide (DMF) and in DMF - H2O mixed solvent by in situ time resolved spectroelectrochemical and cyclic voltametric techniques. The experiments show that not only the oxidation of BV is promoted, the reaction mechanism is also changed from a ECEC to a ECCECC process by the introduction of water into DMF.
Resumo:
The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.
Resumo:
The electrocatalytic oxidation of NADH by ferrocene derivatives and the influence of complexation with beta-cyclodextrin (beta-CD) were investigated at a microdisk electrode in a buffer solution. The cyclic voltammetric behavior of the ferrocene derivatives on the microdisk electrode was used to determine the electron-transfer rate constant from NADH to the ferricinium species. The heterogeneous rate constants and the diffusion coefficient of ferrocene derivatives were determined with the microdisk electrode. The effect of temperature and pH on the electrocatalytic oxidation of NADH were assessed.
Resumo:
Effects of the potential of anodic oxidation and of potential cycling on the surface structure of a highly oriented pyrolytic graphite (HOPG) electrode were observed by in situ electrochemical scanning tunnelling microscopy (ECSTM) in dilute H2SO4 solution with atomic resolution. With potential cycling between -0.1 V and 1.8 V vs. Ag/AgCl (sat. KCI), some atoms on the top layer of HOPG protrude out of the base plane, and the graphite lattice of these protrusions is still intact but is strained and expanded. With further potential cycling, some protrusions coalesced and some grew larger, and an anomalous superperiodic feature was observed (spacing 90 Angstrom with a rotation 30 degrees relative to atomic corrugations) which superimposed on the atomic corrugation of HOPG. On the topmost of these protrusions, some atoms form oxides and others are still resolved by the ECSTM image. With potential cycling between -0.1 V and + 2.0 V vs. Ag/AgCl (sat. KCl), damage to freshly cleaved HOPG surface is more serious and fast, some ridges are observed, the atomic structure of the HOPG surface is partially and then completely damaged due to the formation of oxide. We also found that anodic oxidation occurred nonuniformly on the surface of HOPG near defects during potential cycling.
Resumo:
A chemically modified electrode (CME) constructed by adsorption of aquocobalamin (VB12a) onto a glassy carbon electrode surface was demonstrated to catalyze the electro-oxidation of cysteine, a sulfhydryl-containing compound. The sulfhydryl oxidation occured at 0.54-0.88 V vs. Ag/AgCl depending on pH value (3.0-10.0). The electrocatalytic behavior of cysteine is elucidated with respect to solution pH, operating potential and other variables as well as the CME preparation conditions. When used as the sensing electrode in flow injection amperometric detection, the CME permitted detection of the compound at 0.8 V. The detection limit was 1.7 pmol. The linear response range went up to 1.16 nmol. The stability of the CME was shown by RSD (4.2%) over 10 repeated injections.
Resumo:
A series of mixed oxides La2-xSrxCoO4+/-lambda (x=0-2) with varying x values was synthesized. The crystal structure of this series of mixed oxides was studied by using XRD. The result showed that when x=0.25-1.5 the mixed oxides possessing K2NiF4 structure are formed. The valences of the transition metal Co and the relation between +/-lambda content and x value by using chemical analysis method have been measured, too. The redox property of this series of mixed oxides and different kinds of oxygen species were studied by IR, TPD, TPR, XPS and SEM methods. The catalytic activity in the complete oxidation of CO and CH4 was investigated and the relationships between the activity, composition and structure of the mixed oxides have been elucidated.
Resumo:
Iron, cobalt and copper phthalocyanines/Y zeolite, denoted as FePcY, CoPcY and CuPcY respectively,were prepared. The formation of metal phthalocyanine compounds within the cages of Y zeolite and their crystal structures were determined by elementary analyses, IR, UV-Vis, TG, BET, and XRD methods; The influence of experimental parameters upon phenol conversion and product selectivities was investigated as well.