932 resultados para oligomeric and polymeric thiophenes
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Tissue engineering is a discipline that aims at regenerating damaged biological tissues by using a cell-construct engineered in vitro made of cells grown into a porous 3D scaffold. The role of the scaffold is to guide cell growth and differentiation by acting as a bioresorbable temporary substrate that will be eventually replaced by new tissue produced by cells. As a matter or fact, the obtainment of a successful engineered tissue requires a multidisciplinary approach that must integrate the basic principles of biology, engineering and material science. The present Ph.D. thesis aimed at developing and characterizing innovative polymeric bioresorbable scaffolds made of hydrolysable polyesters. The potentialities of both commercial polyesters (i.e. poly-e-caprolactone, polylactide and some lactide copolymers) and of non-commercial polyesters (i.e. poly-w-pentadecalactone and some of its copolymers) were explored and discussed. Two techniques were employed to fabricate scaffolds: supercritical carbon dioxide (scCO2) foaming and electrospinning (ES). The former is a powerful technology that enables to produce 3D microporous foams by avoiding the use of solvents that can be toxic to mammalian cells. The scCO2 process, which is commonly applied to amorphous polymers, was successfully modified to foam a highly crystalline poly(w-pentadecalactone-co-e-caprolactone) copolymer and the effect of process parameters on scaffold morphology and thermo-mechanical properties was investigated. In the course of the present research activity, sub-micrometric fibrous non-woven meshes were produced using ES technology. Electrospun materials are considered highly promising scaffolds because they resemble the 3D organization of native extra cellular matrix. A careful control of process parameters allowed to fabricate defect-free fibres with diameters ranging from hundreds of nanometers to several microns, having either smooth or porous surface. Moreover, versatility of ES technology enabled to produce electrospun scaffolds from different polyesters as well as “composite” non-woven meshes by concomitantly electrospinning different fibres in terms of both fibre morphology and polymer material. The 3D-architecture of the electrospun scaffolds fabricated in this research was controlled in terms of mutual fibre orientation by properly modifying the instrumental apparatus. This aspect is particularly interesting since the micro/nano-architecture of the scaffold is known to affect cell behaviour. Since last generation scaffolds are expected to induce specific cell response, the present research activity also explored the possibility to produce electrospun scaffolds bioactive towards cells. Bio-functionalized substrates were obtained by loading polymer fibres with growth factors (i.e. biomolecules that elicit specific cell behaviour) and it was demonstrated that, despite the high voltages applied during electrospinning, the growth factor retains its biological activity once released from the fibres upon contact with cell culture medium. A second fuctionalization approach aiming, at a final stage, at controlling cell adhesion on electrospun scaffolds, consisted in covering fibre surface with highly hydrophilic polymer brushes of glycerol monomethacrylate synthesized by Atom Transfer Radical Polymerization. Future investigations are going to exploit the hydroxyl groups of the polymer brushes for functionalizing the fibre surface with desired biomolecules. Electrospun scaffolds were employed in cell culture experiments performed in collaboration with biochemical laboratories aimed at evaluating the biocompatibility of new electrospun polymers and at investigating the effect of fibre orientation on cell behaviour. Moreover, at a preliminary stage, electrospun scaffolds were also cultured with tumour mammalian cells for developing in vitro tumour models aimed at better understanding the role of natural ECM on tumour malignity in vivo.
Resumo:
Much effort has been devoted in the recent years to the investigation of optically active polythiophenes characterized by the presence of a chiral moiety linked to the 3-position of the aromatic ring. In addition to their potential technological applications as materials for enantioselective electrodes and membranes, chiral poly(thiophene)s offer the possibility of studying the structural changes accompanying the transition from the disordered state by following the variation of their chiroptical properties by circular dichroism (CD). In solution of a good solvent, that kind of polythiophenes doesn’t display any optical activity arising from the presence of dissymmetric conformation of the backbone, as shown by circular dichroism (CD) spectra. When the macromolecules begin to aggregate, as it occurs e.g. by addition of a poor solvent, or lowering the solution temperature, or when the macromolecules are assembled in the solid state as thin films obtained by solution casting or spin coating, significant CD bands are observed in the spectral region related to the electronic absorptions of the aromatic polythiophene chromophore. These CD bands are indicative of a chiral macromolecule arrangement of one prevailing chirality. The synthesis of -substituted polythiophenes can be carried out starting from the corresponding -substituted mono- or oligomeric thiophenic monomers under regioselective or regiospecific conditions in order to minimize or avoid the formation of head-to-head dyads unfavourably affecting the presence of coplanar conformations of thiophene rings as a consequence of steric interactions between the side-chain substituents, both in solution and in the solid state. To this regard, non-symmetrically substituted monomers require therefore to perform the polymerization in the presence of highly demanding catalysts and reaction condition, whereas with symmetrically substituted oligothiophenic monomers containing the -substituents located far apart from the reacting sites, it is instead possible to obtain regioregular macromolecules by adopting more simple and economic polymerization methods, such as, e. g., the chemical oxidative polymerization with iron (III) trichloride. In order to verify how the polymer structure affects its optical activity, further poly-3-alkylthiophenes, substituted by an enantiomerically pure chiral alkyl group, namely poli[3,3”-di[2((S)-(+)-2-methylbutoxy)ethyl]-2,2’:5’,2”-terthiophene] (PDMBOETT), poli[3,3’di[2((S)-(+)-2-methylbutoxy)ethyl]-2,2’-bitiofene] (PDMBOEBT), poli[3,3””-didodecyl-4’,3”’-di(S)-(+)-2-methylbutyl-2,2’:5’,2”:5”,2”’:5”’,2””-quinquethiophene (PDDDMBQT) have been synthesized and characterized by instrumental techniques. The spectroscopic behaviour of thin films of poly(DDDMBQT) has been investigated in the solid state under different sample preparation procedures. It was also compared with the behaviour of polymers previously made. The experimental results are interpreted in terms of influence of the side-chain substituents on the extent of planarity of the polymeric chains and the formation of optically active chiral aggregates. In recent years conjugated block copolymers have received considerable attention. It is well known that conjugated block copolymers composed of two electronically different blocks can have morphologic and optical properties, that differ from those of their homopolymers. A recent study has also shown that the electronic properties and the supramolecular organization of one conjugated block can also be influenced by the other block. In order to study better this behavior, a new conjugated block copolymers, composed of a regioregular hydrophylic block and a regioregular hydrophobic block namely poli[3[2-(2-metossietossi)etossi]metiltiofene]-co- poli[3(1-octilossi)tiofene], has been synthesized and characterized.
Resumo:
Die Ziele der vorliegenden Arbeit waren 1) die Entwicklung und Validierung von sensitiven und substanz-spezifischen Methoden für die quantitative Bestimmung von anionischen, nichtionischen und amphoteren Tensiden und deren Metaboliten in wässrigen Umweltproben unter Einsatz leistungsfähiger, massenspektrometrischer Analysengeräte,2) die Gewinnung von aeroben, polaren Abbauprodukten aus Tensiden in einem die realen Umweltbedingungen simulierenden Labor-Festbettbioreaktor (FBBR), dessen Biozönose oberflächenwasserbürtig war,3) zur Aufklärung des Abbaumechanismus von Tensiden neue, in 2) gewonnene Metabolite zu identifizieren und massenspektrometrisch zu charakterisieren ebenso wie den Primärabbau und den weiteren Abbau zu verfolgen,4) durch quantitative Untersuchungen von Tensiden und deren Abbauprodukten in Abwasser und Oberflächenwasser Informationen zu ihrem Eintrag und Verhalten bei unterschiedlichen hydrologischen und klimatischen Bedingungen zu erhalten,5) das Verhalten von persistenten Tensidmetaboliten in Wasserwerken, die belastetes Oberflächenwasser aufbereiten, zu untersuchen und deren Vorkommen im Trinkwasser zu bestimmen,6) mögliche Schadwirkungen von neu entdeckten Metabolite mittels ökotoxikologischer Biotests abzuschätzen,7) durch Vergleich der Felddaten mit den Ergebnissen der Laborversuche die Umweltrelevanz der Abbaustudien zu belegen. Die Auswahl der untersuchten Verbindungen erfolgte unter Berücksichtigung ihres Produktionsvolumens und der Neuheit auf dem Tensidmarkt. Sie umfasste die Waschmittelinhaltsstoffe lineare Alkylbenzol-sulfonate (LAS), welches das Tensid mit der höchsten Produktionsmenge darstellte, die beiden nichtionischen Tenside Alkylglucamide (AG) und Alkylpolyglucoside (APG), ebenso wie das amphotere Tensid Cocamidopropylbetain (CAPB). Außerdem wurde der polymere Farbübertragungsinhibitor Polyvinylpyrrolidon (PVP) untersucht.
Resumo:
In the present work a series of thiophene oligomers of three and six thiophene units were synthesized, starting from thiophene, and characterized. Polymers containing these electroative side groups were then prepared by two strategies. The oligomers were attached to existing polymer systems and were connected to a polymerizable unit leading to monomer containing the oligothiophenes as side groups. Subsequently the properties of the monomers and the polymers were investigated. A butylcellulose derivative carrying terthienyl side chains (BCTTE, 26) was synthesized starting from cellulose acetate and 5-(2-chloroethyl)-2,2':5',2'-terthiophene (4). The polymer had a degree of substitution (DS) of the butyl and terthienyl side chains of DSbutyl = 1.9 and DSterth = 0.35, respectively. It was successfully spread on a Langmuir-Blodgett (LB) trough and then transferred to several solid substrates. X-rays reflectometry showed an ordered architecture of the cellulose backbones. However, the terthiophene side groups were found as isotropically aligned by polarized UV-Vis spectroscopy. When used as anode material in the electropolymerization of 3-pentylthiophene (28), polythiophene was grafted onto the cellulose backbone through the terthienyl side groups. The polythiophene chains showed an average anisotropic alignment of 20 % along the LB dipping direction, calculated by means of polarized UV-Vis spectroscopy. A second butylcellulose derivative carrying sexithienyl side chains (BCST) was synthesized and investigated, starting from butylcellulose and 2-[b ', b ''-dipentyl-5'''-(2-hydroxyethyl)-2,2': 5',2':5',2'':5'',2'':5'',2'''-sexithiophen-5-yl]-ethyl p-toluensulfonate (7). The polymer showed formation of stable LB monolayers at the air-water interface, but its transfer onto solid substrates was not successful. A poly(p-phenylene-ethynylene) bearing sexithienyl side chains (BzAcST, 31) was prepared by reaction of the two monomers 2-[b ', b ''-dipentyl-5'''-(2-hydroxyethyl)-2,2': 5',2':5',2'':5'',2'':5'',2'''-sexithiophen-5-yl]-ethyl 2,5-diiodobenzoate (15) and 2-[b', b ''-dipentyl-5'''-(2-hydroxyethyl)-2,2':5',2':5',2'':5'',2'':5'',2'''-sexithiophen-5-yl]-ethyl 2,5-diethynylbenzoate (18). The polymer was obtained as insoluble product. Upon oxidation with FeCl3 (doping) of the polymer suspension, BzAcST showed an electrical conductivity of ó = 2.5 . 10 -6 S/cm, a typical value for semiconductors. The IR spectrum of the doped polymer presented the diagnostic bands of oxidized sexithiophene in good agreement with literature results. Along with the monomer and polymer synthesis, an a,a '-disubstituted sexithiophene, b ', b ''-dipentyl-5,5'''-bis-(2-hydroxyethyl)-2,2':5',2':5',2'':5'',2'':5'',2'''-sexithiophene (6a),was synthesized and characterized. The UV-Vis absorption of the chromophore wasinvestigated as a function of temperature and different solvents, showing a blue-shift of the absorption maximum with increasing temperature and a red-shift changing the solvent from hexane to ethanol to toluene. Monitoring the change of the UV-Vis spectrum upon electrochemical oxidation, the oxidized chromophore showed a new broad absorption band, red shifted with respect to the p -p* transition of the neutral state. Upon reduction, the new band disappeared and the UV-Vis spectrum of the chromophore was restored. Such oxidation-reduction cycles were totally reversible. This feature, together with the absorption maximum falling in the visible region, makes this chromophore a suitable compound for the development of an electrochemical sensor.Attempts to polymerize acrylic monomers carrying sexythienyl side chains both via radical polymerization, as in the case of 2-[b ', b ''-dipentyl-5'''-(2-hydroxyethyl)-2,2': 5',2':5',2'':5'',2'':5'',2'''-sexithiophen-5-yl]-ethyl acrylate (8), and anionic polymerization, as in the case of 2-{b ', b ''-dipentyl-5'''-[2-(tertbutyldimethylsiloxy)ethyl]-2,2':5',2':5',2'':5'',2'': 5'',2''' -sexithiophen-5-yl}-ethylacrylate (29), were not successful, probably due to the steric hindrance of the oligothiophene side group. However, due to the time consuming and therefore restricted availability of the monomers, a screening of the polymerization conditions towards the formation of polymeric material was not possible.
Resumo:
Das Ziel der vorliegenden Arbeit ist die Untersuchung der räumlichen und zeitlichen Aspekte der heterogenen Dynamik in Modellglasbildnern. Dabei wird vor allem die langsame alpha-Relaxationsdynamik oberhalb des Glasüberganges Tg untersucht. Die nukleare Magnetresonanz zeigt ihre einmalige Vielseitigkeit bei der Untersuchung molekularer Dynamik, wenn die angewandten Techniken und Experimente durch Simulationen unterstützt werden. Die räumliche Aspekt dynamischer Heterogenitäten wird untersucht durch ein reduziertes vierdimensionales Spindiffusionsexperiment (4D3CP), ein Experiment, das Reorientierungsraten örtlich korreliert. Eine Simulation dieses Experimentes an einem System harter Kugeln liefert wertvolle Informationen über die Auswertemethode des 4D3CP Experiments. Glycerol und o-terphenyl werden durch das 4D3CP Experiment untersucht. Die erhaltenen Resultate werden mit bereits publizierten Daten des polymeren Glasbildners PVAc verglichen. Während PVAc und o-terphenyl eine Längenskale von 3.7 nm bzw. 2.9 nm aufweisen, ist die Längenskale von Glycerol signifikant kleiner bei 1.1 nm. Ein neues Experiment, welches sensitiv auf Translationsbewegung reagiert, wird vorgestellt. Durch Verwendung eines pi-Impulszuges kann eine separate Evolution unter dem Hamiltonian der dipolaren Kopplung und der chemischen Verschiebungsanisotropie erreicht werden.
Resumo:
Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.
Resumo:
My research PhD work is focused on the Electrochemically Generated Luminescence (ECL) investigation of several different homogeneous and heterogeneous systems. ECL is a redox induced emission, a process whereby species, generated at electrodes, undergo a high-energy electron transfer reaction to form excited states that emit light. Since its first application, the ECL technique has become a very powerful analytical tool and has widely been used in biosensor transduction. ECL presents an intrinsically low noise and high sensitivity; moreover, the electrochemical generation of the excited state prevents scattering of the light source: for all these characteristics, it is an elective technique for ultrasensitive immunoassay detection. The majority of ECL systems involve species in solution where the emission occurs in the diffusion layer near to the electrode surface. However, over the past few years, an intense research has been focused on the ECL generated from species constrained on the electrode surface. The aim of my work is to study the behavior of ECL-generating molecular systems upon the progressive increase of their spatial constraints, that is, passing from isolated species in solution, to fluorophores embedded within a polymeric film and, finally, to patterned surfaces bearing “one-dimensional” emitting spots. In order to describe these trends, I use different “dimensions” to indicate the different classes of compounds. My thesis was mostly developed in the electrochemistry group of Bologna with the supervision of Prof Francesco Paolucci and Dr Massimo Marcaccio. With their help and also thanks to their long experience in the molecular and supramolecular ECL fields and in the surface investigations using scanning probe microscopy techniques, I was able to obtain the results herein described. Moreover, during my research work, I have established a new collaboration with the group of Nanobiotechnology of Prof. Robert Forster (Dublin City University) where I spent a research period. Prof. Forster has a broad experience in the biomedical field, especially he focuses his research on film surfaces biosensor based on the ECL transduction. This thesis can be divided into three sections described as follows: (i) in the fist section, homogeneous molecular and supramolecular ECL-active systems, either organic or inorganic species (i.e., corannulene, dendrimers and iridium metal complex), are described. Driving force for this kind of studies includes the search for new luminophores that display on one hand higher ECL efficiencies and on the other simple mechanisms for modulating intensity and energy of their emission in view of their effective use in bioconjugation applications. (ii) in the second section, the investigation of some heterogeneous ECL systems is reported. Redox polymers comprising inorganic luminophores were described. In such a context, a new conducting platform, based on carbon nanotubes, was developed aimed to accomplish both the binding of a biological molecule and its electronic wiring to the electrode. This is an essential step for the ECL application in the field of biosensors. (iii) in the third section, different patterns were produced on the electrode surface using a Scanning Electrochemical Microscopy. I developed a new methods for locally functionalizing an inert surface and reacting this surface with a luminescent probe. In this way, I successfully obtained a locally ECL active platform for multi-array application.
Resumo:
The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to absorb X-ray radiation, play a fundamental role as they are employed both to enhance visibility of devices during interventions and to protect medical staff and patients from X-ray radiations. Organic-inorganic hybrids are materials that combine characteristics of organic polymers with those of inorganic metal oxides. These materials can be synthesized via the sol-gel process and can be easily applied as thin coatings on different kinds of substrates. Good radiopacity of organic-inorganic hybrids has been recently reported suggesting that these materials might find applications in medical fields where X-ray absorption and visibility is required. The present PhD thesis aimed at developing and characterizing new radiopaque organic-inorganic hybrid materials that can find application in the vascular surgery field as coatings for the improvement of medical devices traceability as well as for the production of X-ray shielding objects and garments. Novel organic-inorganic hybrids based on different polyesters (poly-lactic acid and poly-ε-caprolactone) and polycarbonate (poly-trimethylene carbonate) as the polymeric phase and on titanium oxide as the inorganic phase were synthesized. Study of the phase interactions in these materials allowed to demonstrate that Class II hybrids (where covalent bonds exists between the two phases) can be obtained starting from any kind of polyester or polycarbonate, without the need of polymer pre-functionalization, thanks to the occurrence of transesterification reactions operated by inorganic molecules on ester and carbonate moieties. Polyester based hybrids were successfully coated via dip coating on different kinds of textiles. Coated textiles showed improved radiopacity with respect to the plain fabric while remaining soft to the touch. The hybrid was able to coat single fibers of the yarn rather than coating the yarn as a whole. Openings between yarns were maintained and therefore fabric breathability was preserved. Such coatings are promising for the production of light-weight garments for X-ray protection of medical staff during interventional fluoroscopy, which will help preventing pathologies that stem from chronic X-ray exposure. A means to increase the protection capacity of hybrid-coated fabrics was also investigated and implemented in this thesis. By synthesizing the hybrid in the presence of a suspension of radiopaque tantalum nanoparticles, PDMS-titania hybrid materials with tunable radiopacity were developed and were successfully applied as coatings. A solution for enhancing medical device radiopacity was also successfully investigated. High metal radiopacity was associated with good mechanical and protective properties of organic-inorganic hybrids in the form of a double-layer coating. Tantalum was employed as the constituent of the first layer deposited on sample substrates by means of a sputtering technique. The second layer was composed of a hybrid whose constituents are well-known biocompatible organic and inorganic components, such as the two polymers PCL and PDMS, and titanium oxide, respectively. The metallic layer conferred to the substrate good X-ray visibility. A correlation between radiopacity and coating thickness derived during this study allows to tailor radiopacity simply by controlling the metal layer sputtering deposition time. The applied metal deposition technique also permits easy shaping of the radiopaque layer, allowing production of radiopaque markers for medical devices that can be unambiguously identified by surgeons during implantation and in subsequent radiological investigations. Synthesized PCL-titania and PDMS-titania hybrids strongly adhered to substrates and show good biocompatibility as highlighted by cytotoxicity tests. The PDMS-titania hybrid coating was also characterized by high flexibility that allows it to stand large substrate deformations without detaching nor cracking, thus being suitable for application on flexible medical devices.
Resumo:
Aim of this thesis was to further extend the applicability of the Fourier-transform (FT) rheology technique especially for non-linear mechanical characterisation of polymeric materials on the one hand and to investigated the influence of the degree of branching on the linear and non-linear relaxation behaviour of polymeric materials on the other hand. The latter was achieved by employing in particular FT-rheology and other rheological techniques to variously branched polymer melts and solutions. For these purposes, narrowly distributed linear and star-shaped polystyrene and polybutadiene homo-polymers with varying molecular weights were anionically synthesised using both high-vacuum and inert atmosphere techniques. Furthermore, differently entangled solutions of linear and star-shaped polystyrenes in di-sec-octyl phthalate (DOP) were prepared. The several linear polystyrene solutions were measured under large amplitude oscillatory shear (LAOS) conditions and the non-linear torque response was analysed in the Fourier space. Experimental results were compared with numerical predictions performed by Dr. B. Debbaut using a multi-mode differential viscoelastic fluid model obeying the Giesekus constitutive equation. Apart from the analysis of the relative intensities of the harmonics, a detailed examination of the phase information content was developed. Further on, FT-rheology allowed to distinguish polystyrene melts and solutions due to their different topologies where other rheological measurements failed. Significant differences occurred under LAOS conditions as particularly reflected in the phase difference of the third harmonic, ¶3, which could be related to shear thinning and shear thickening behaviour.
Resumo:
The worldwide demand for a clean and low-fuel-consuming transport promotes the development of safe, high energy and power electrochemical storage and conversion systems. Lithium-ion batteries (LIBs) are considered today the best technology for this application as demonstrated by the recent interest of automotive industry in hybrid (HEV) and electric vehicles (EV) based on LIBs. This thesis work, starting from the synthesis and characterization of electrode materials and the use of non-conventional electrolytes, demonstrates that LIBs with novel and safe electrolytes and electrode materials meet the targets of specific energy and power established by U.S.A. Department of Energy (DOE) for automotive application in HEV and EV. In chapter 2 is reported the origin of all chemicals used, the description of the instruments used for synthesis and chemical-physical characterizations, the electrodes preparation, the batteries configuration and the electrochemical characterization procedure of electrodes and batteries. Since the electrolyte is the main critical point of a battery, in particular in large- format modules, in chapter 3 we focused on the characterization of innovative and safe electrolytes based on ionic liquids (characterized by high boiling/decomposition points, thermal and electrochemical stability and appreciable conductivity) and mixtures of ionic liquid with conventional electrolyte. In chapter 4 is discussed the microwave accelerated sol–gel synthesis of the carbon- coated lithium iron phosphate (LiFePO 4 -C), an excellent cathode material for LIBs thanks to its intrinsic safety and tolerance to abusive conditions, which showed excellent electrochemical performance in terms of specific capacity and stability. In chapter 5 are presented the chemical-physical and electrochemical characterizations of graphite and titanium-based anode materials in different electrolytes. We also characterized a new anodic material, amorphous SnCo alloy, synthetized with a nanowire morphology that showed to strongly enhance the electrochemical stability of the material during galvanostatic full charge/discharge cycling. Finally, in chapter 6, are reported different types of batteries, assembled using the LiFePO 4 -C cathode material, different anode materials and electrolytes, characterized by deep galvanostatic charge/discharge cycles at different C-rates and by test procedures of the DOE protocol for evaluating pulse power capability and available energy. First, we tested a battery with the innovative cathode material LiFePO 4 -C and conventional graphite anode and carbonate-based electrolyte (EC DMC LiPF 6 1M) that demonstrated to surpass easily the target for power-assist HEV application. Given that the big concern of conventional lithium-ion batteries is the flammability of highly volatile organic carbonate- based electrolytes, we made safe batteries with electrolytes based on ionic liquid (IL). In order to use graphite anode in IL electrolyte we added to the IL 10% w/w of vinylene carbonate (VC) that produces a stable SEI (solid electrolyte interphase) and prevents the graphite exfoliation phenomenon. Then we assembled batteries with LiFePO 4 -C cathode, graphite anode and PYR 14 TFSI 0.4m LiTFSI with 10% w/w of VC that overcame the DOE targets for HEV application and were stable for over 275 cycles. We also assembled and characterized ―high safety‖ batteries with electrolytes based on pure IL, PYR 14 TFSI with 0.4m LiTFSI as lithium salt, and on mixture of this IL and standard electrolyte (PYR 14 TFSI 50% w/w and EC DMC LiPF 6 50% w/w), using titanium-based anodes (TiO 2 and Li 4 Ti 5 O 12 ) that are commonly considered safer than graphite in abusive conditions. The batteries bearing the pure ionic liquid did not satisfy the targets for HEV application, but the batteries with Li 4 Ti 5 O 12 anode and 50-50 mixture electrolyte were able to surpass the targets. We also assembled and characterized a lithium battery (with lithium metal anode) with a polymeric electrolyte based on poly-ethilenoxide (PEO 20 – LiCF 3 SO 3 +10%ZrO 2 ), which satisfied the targets for EV application and showed a very impressive cycling stability. In conclusion, we developed three lithium-ion batteries of different chemistries that demonstrated to be suitable for application in power-assist hybrid vehicles: graphite/EC DMC LiPF 6 /LiFePO 4 -C, graphite/PYR 14 TFSI 0.4m LiTFSI with 10% VC/LiFePO 4 -C and Li 4 T i5 O 12 /PYR 14 TFSI 50%-EC DMC LiPF 6 50%/LiFePO 4 -C. We also demonstrated that an all solid-state polymer lithium battery as Li/PEO 20 –LiCF 3 SO 3 +10%ZrO 2 /LiFePO 4 -C is suitable for application on electric vehicles. Furthermore we developed a promising anodic material alternative to the graphite, based on SnCo amorphous alloy.
Resumo:
The common thread of this thesis is the will of investigating properties and behavior of assemblies. Groups of objects display peculiar properties, which can be very far from the simple sum of respective components’ properties. This is truer, the smaller is inter-objects distance, i.e. the higher is their density, and the smaller is the container size. “Confinement” is in fact a key concept in many topics explored and here reported. It can be conceived as a spatial limitation, that yet gives origin to unexpected processes and phenomena based on inter-objects communication. Such phenomena eventually result in “non-linear properties”, responsible for the low predictability of large assemblies. Chapter 1 provides two insights on surface chemistry, namely (i) on a supramolecular assembly based on orthogonal forces, and (ii) on selective and sensitive fluorescent sensing in thin polymeric film. In chapters 2 to 4 confinement of molecules plays a major role. Most of the work focuses on FRET within core-shell nanoparticles, investigated both through a simulation model and through experiments. Exciting results of great applicative interest are drawn, such as a method of tuning emission wavelength at constant excitation, and a way of overcoming self-quenching processes by setting up a competitive deactivation channel. We envisage applications of these materials as labels for multiplexing analysis, and in all fields of fluorescence imaging, where brightness coupled with biocompatibility and water solubility is required. Adducts of nanoparticles and molecular photoswitches are investigated in the context of superresolution techniques for fluorescence microscopy. In chapter 5 a method is proposed to prepare a library of functionalized Pluronic F127, which gives access to a twofold “smart” nanomaterial, namely both (i)luminescent and (ii)surface-functionalized SCSSNPs. Focus shifts in chapter 6 to confinement effects in an upper size scale. Moving from nanometers to micrometers, we investigate the interplay between microparticles flowing in microchannels where a constriction affects at very long ranges structure and dynamics of the colloidal paste.
Resumo:
Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.
Resumo:
Nature leads, we follow. But nanotechnologists are in hot pursuit, in designing controllable structures that can mimic naturally occurring and artificially synthesized materials on a common platform. The supramolecular chemistry concerns the investigation of nature principles to produce fascinating complexed and functional molecular assemblies, as well as the utilization of these principles to generate novel devices and materials, potentially useful for sensing, catalysis, transport and other applications in medical or engineering science. The work presented in this thesis is a compilation of different synthetic methods to achieve inorganic-organic hybrid nanomaterials. Silicatein, a protein enzyme, which acts both as a catalyst and template for the formation of silica needles in marine sponges, has been used for the biosynthesis of semiconductor metal oxides on surfaces. Silicatein was immobilized on gold (111) surfaces using alkane thiol, as well as on a novel self-assembly of NTA on top of a “cushion” of reactive ester polymer has been successfully employed to make functionalised surfaces. The immobilization of silicatein on surfaces was monitored by surface plasmon spectroscopy, atomic force microscopy and confocal laser scanning microscopy. Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring its hydrocatalytic activity to catalyse the synthesis of biosilica, biotitania, and biozirconia. The synthesis of semiconductor metal oxides was characterized using scanning electron microscopy. This hydrolytic biocatalyst is used to synthesize the gold nanoparticles. The gold nanoparticles are formed by reduction of tetrachloroaurate, AuCl4-, by the action of sulfhydryl groups hidden below the surface groups of the protein. The resulting gold nanoparticles which are stabilized by surface bound silicatein further aggregate to form Au nanocrystals. The shape of the nanocrystals obtained by using recombinant silicatein is controlled through chiral induction by the protein during the nucleation of the nanocrystals. As an extension of this work, TiO2 nanowires were functionalized using polymeric ligand which incorporates the nitrilotriacetic acid (NTA) linker in the back bone to immobilize His-tagged silicatein onto the TiO2 nanowires. The surface bound protein not only retains its original hydrolytic properties, but also acts as a reductant for AuCl4- in the synthesis of hybrid TiO2/silicatein/Au nanocomposites. Functionalized, monocrystalline rutile TiO2 nanorods were prepared from TiCl4 in aqueous solution in the presence of dopamine. The surface bound organic ligand controls the morphology as well as the crystallinity and the phase selection of TiO2. The surface amine groups can be tailored further with functional molecules such as dyes. As an example, this surface functionality is used for the covalent binding of a fluorescent dye,4-chloro-7- nitrobenzylurazene (NBD) to the TiO2 nanorods. The polymeric ligands have been used successfully for the in-situ and post-functionalization of TiO2 nanoparticles. Besides to chelating dopamine anchor group the multifunctional ligand system presented here incorporates a modifier molecule which allows the binding of functional molecules (here the dyes pyrene, NBD, and Texas Red) as well as additional entities which allow tailoring the solubility of inorganic nanocrystals in different solvents. A novel method for the surface functionalization of fullerene-type MoS2 nanoparticles and subsequently binding these nanoparticles onto TiO2 nanowires has been reported using polymeric ligands. The procedure involves the complexation of IF-MoS2 with a combination of Ni2+ via an umbrella-type nitrilotriacetic acid (NTA) and anchoring them to the sidewalls of TiO2 nanowires utilizing the hydroxyl groups of dopamine present in the main contents of polymeric ligand. A convenient method for the synthesis of Au/CdS nanocomposites has been presented, which were achieved through the novel method of thiol functionalization of gold colloids. The thermodynamically most stable phase of ZrO2 (cubic) has been obtained at much lower temperature (180°C). These nanoparticles are highly blue fluorescent, with a high surface area.
Resumo:
Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. These imidazolium salt containing acrylate monomers were polymerize at 70oC by free radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght. The chemical structure of the polymer electrolytes obtained by the described synthetic routes was investigated by NMR-spectroscopy. The polymers were doped with various amounts of H3PO4 and LiN(SO2CF3)2, to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally stable up to about 200◦C. DSC results indicates the softening effect of the length of the spacers (n) as well as phosphoric acid. The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4. It was observed that the lithium ion conductivity of the poly(AcIm-2-Li) x LiN(SO2CF3)2 increases with blends (x) up to certain composition and then leveled off independently from blend content. The conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li) x LiN(SO2CF3)2 where x is 10. The phosphate and phosphoric acid functionality in the resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the formation of cross-linked materials at elevated temperature which may improve the mechanical properties to be used as membrane materials in fuel cells. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to better resolved resonances in both the backbone region and side chain region. The mobile and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR spectra. The interaction of the protons which may contribute to the conductivity is observed from the 2D double quantum correlation (DQC) spectra.