937 resultados para multiple linear regression models
Resumo:
Adiponectin serum concentrations are an important biomarker in cardiovascular epidemiology with heritability etimates of 30-70%. However, known genetic variants in the adiponectin gene locus (ADIPOQ) account for only 2%-8% of its variance. As transcription factors are thought to play an under-acknowledged role in carrying functional variants, we hypothesized that genetic polymorphisms in genes coding for the main transcription factors for the ADIPOQ promoter influence adiponectin levels. Single nucleotide polymorphisms (SNPs) at these genes were selected based on the haplotype block structure and previously published evidence to be associated with adiponectin levels. We performed association analyses of the 24 selected SNPs at forkhead box O1 (FOXO1), sterol-regulatory-element-binding transcription factor 1 (SREBF1), sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor gamma (PPARG) and transcription factor activating enhancer binding protein 2 beta (TFAP2B) gene loci with adiponectin levels in three different European cohorts: SAPHIR (n = 1742), KORA F3 (n = 1636) and CoLaus (n = 5355). In each study population, the association of SNPs with adiponectin levels on log-scale was tested using linear regression adjusted for age, sex and body mass index, applying both an additive and a recessive genetic model. A pooled effect size was obtained by meta-analysis assuming a fixed effects model. We applied a significance threshold of 0.0033 accounting for the multiple testing situation. A significant association was only found for variants within SREBF1 applying an additive genetic model (smallest p-value for rs1889018 on log(adiponectin) = 0.002, β on original scale = -0.217 µg/ml), explaining ∼0.4% of variation of adiponectin levels. Recessive genetic models or haplotype analyses of the FOXO1, SREBF1, SIRT1, TFAPB2B genes or sex-stratified analyses did not reveal additional information on the regulation of adiponectin levels. The role of genetic variations at the SREBF1 gene in regulating adiponectin needs further investigation by functional studies.
Resumo:
OBJECTIVE: We assessed the association between birth weight, weight change, and current blood pressure (BP) across the entire age-span of childhood and adolescence in large school-based cohorts in the Seychelles, an island state in the African region. METHODS: Three cohorts were analyzed: 1004 children examined at age 5.5 and 9.1 years, 1886 children at 9.1 and 12.5, and 1575 children at 12.5 and 15.5, respectively. Birth and 1-year anthropometric data were gathered from medical files. The outcome was BP at age 5.5, 9.1, 12.5 or 15.5 years, respectively. Conditional linear regression analysis was used to estimate the relative contribution of changes in weight (expressed in z-score) during different age periods on BP. All analyses were adjusted for height. RESULTS: At all ages, current BP was strongly associated with current weight. Birth weight was not significantly associated with current BP. Upon adjustment for current weight, the association between birth weight and current BP tended to become negative. Conditional linear regression analyses indicated that changes in weight during successive age periods since birth contributed substantially to current BP at all ages. The strength of the association between weight change and current BP increased throughout successive age periods. CONCLUSION: Weight changes during any age period since birth have substantial impact on BP during childhood and adolescence, with BP being more responsive to recent than earlier weight changes.
Resumo:
Summary: Particulate air pollution is associated with increased cardiovascular risk. The induction of systemic inflammation following particle inhalation represents a plausible mechanistic pathway. The purpose of this study was to assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers in 6183 adults in Lausanne, Switzerland. The results show that short-term exposure to PM10 was associated with higher levels of circulating IL-6 and TNF-α. The positive association of PM10 with markers of systemic inflammation materializes the link between air pollution and cardiovascular risk. Background: Variations in short-term exposure to particulate matters (PM) have been repeatedly associated with daily all-cause mortality. Particle-induced inflammation has been postulated to be one of the important mechanisms for increased cardiovascular risk. Experimental in-vitro, in-vivo and controlled human studies suggest that interleukin 6 (IL-6) and tumor-necrosis-factor alpha (TNF-α) could represent key mediators of the inflammatory response to PM. The associations of short-term exposure to ambient PM with circulating inflammatory markers have been inconsistent in studies including specific subgroups so far. The epidemiological evidence linking short-term exposure to ambient PM and systemic inflammation in the general population is scarce. So far, large-scale population-based studies have not explored important inflammatory markers such as IL-6, IL-1β or TNF-α. We therefore analyzed the associations between short-term exposure to ambient PM10 and circulating levels of high-sensitive CRP (hs-CRP), IL-6, IL-1β and TNF-α in the population-based CoLaus study. Objectives: To assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers, including hs-CRP, IL-6, IL-1β and TNF-α, in adults aged 35 to 75 years from the general population. Methodology: All study subjects were participants to the CoLaus study (www.colaus.ch) and the baseline examination was carried out from 2003 to 2006. Overall, 6184 participants were included. For the present analysis, 6183 participants had data on at least one of the four measured circulating inflammatory markers. The monitoring data was obtained from the website of Swiss National Air Pollution Monitoring Network (NABEL). We analyzed data on PM10 as well as outside air temperature, pressure and humidity. Hourly concentrations of PM10 were collected from 1 January 2003 to 31 December 2006. Robust linear regression (PROC ROBUSTREG) was used to evaluate the relationship between cytokine inflammatory and PM10. We adjusted all analyses for age, sex, body mass index, smoking status, alcohol consumption, diabetes status, hypertension status, education levels, zip code, and statin intake. All data were adjusted for the effects of weather by including temperature, barometric pressure, and season as covariates in the adjusted models. We performed simple and multiple logistic regression analyses. Descriptive statistical analysis used the Wilcoxon rank sum test (for medians). All data analyses were performed using SAS software (version 9.2; SAS Institute Inc., Cary, NC, USA), and a two-sided significance level of 5% was used. Results: PM10 levels averaged over 24 hours were significantly and positively associated with continuous IL-6 and TNF-α levels, in the whole study population both in unadjusted and adjusted analyses. For each cytokine, there was a similar seasonal pattern, with wider confidence intervals in summer than during the other seasons, which might partly be due to the smaller number of participants examined in summer. The associations of PM10 with IL-6 and TNF-α were also found after having dichotomized these cytokines into high versus low levels, which suggests that the associations of PM10 with the continuous cytokine levels are very robust to any distributional assumption and to potential outlier values. In contrast with what we observed for continuous IL-1β levels, high PM10 levels were significantly associated with high IL-1β. PM10 was significantly associated with IL-6 and TNF-α in men, but with TNF-α only in women. However, there was no significant statistical interaction between PM10 and sex. For IL-6 and TNF-α, the associations tended to be stronger in younger people, with a significant interaction between PM10 and age groups for IL-6. PM10 was significantly associated with IL-6 and TNF-α in the healthy group and also in the "non-healthy" group, although the statistical interaction between healthy status and PM10 was not significant. Conclusion: In summary, we found significant independent positive associations of short-term exposure to PM10 with circulating levels of IL-6 and TNF-α in the adult population of Lausanne. Our findings strongly support the idea that short-term exposure to PM10 is sufficient to induce systemic inflammation on a broad scale in the general population. From a public health perspective, the reported association of elevated inflammatory cytokines with short-term exposure to PM10 in a city with relatively clean air such as Lausanne supports the importance of limiting urban air pollution levels.
Resumo:
It is generally accepted that between 70 and 80% of manufacturing costs can be attributed to design. Nevertheless, it is difficult for the designer to estimate manufacturing costs accurately, especially when alternative constructions are compared at the conceptual design phase, because of the lack of cost information and appropriate tools. In general, previous reports concerning optimisation of a welded structure have used the mass of the product as the basis for the cost comparison. However, it can easily be shown using a simple example that the use of product mass as the sole manufacturing cost estimator is unsatisfactory. This study describes a method of formulating welding time models for cost calculation, and presents the results of the models for particular sections, based on typical costs in Finland. This was achieved by collecting information concerning welded products from different companies. The data included 71 different welded assemblies taken from the mechanical engineering and construction industries. The welded assemblies contained in total 1 589 welded parts, 4 257 separate welds, and a total welded length of 3 188 metres. The data were modelled for statistical calculations, and models of welding time were derived by using linear regression analysis. Themodels were tested by using appropriate statistical methods, and were found to be accurate. General welding time models have been developed, valid for welding in Finland, as well as specific, more accurate models for particular companies. The models are presented in such a form that they can be used easily by a designer, enabling the cost calculation to be automated.
Resumo:
BACKGROUND: Obesity is strongly associated with major depressive disorder (MDD) and various other diseases. Genome-wide association studies have identified multiple risk loci robustly associated with body mass index (BMI). In this study, we aimed to investigate whether a genetic risk score (GRS) combining multiple BMI risk loci might have utility in prediction of obesity in patients with MDD. METHODS: Linear and logistic regression models were conducted to predict BMI and obesity, respectively, in three independent large case-control studies of major depression (Radiant, GSK-Munich, PsyCoLaus). The analyses were first performed in the whole sample and then separately in depressed cases and controls. An unweighted GRS was calculated by summation of the number of risk alleles. A weighted GRS was calculated as the sum of risk alleles at each locus multiplied by their effect sizes. Receiver operating characteristic (ROC) analysis was used to compare the discriminatory ability of predictors of obesity. RESULTS: In the discovery phase, a total of 2,521 participants (1,895 depressed patients and 626 controls) were included from the Radiant study. Both unweighted and weighted GRS were highly associated with BMI (P <0.001) but explained only a modest amount of variance. Adding 'traditional' risk factors to GRS significantly improved the predictive ability with the area under the curve (AUC) in the ROC analysis, increasing from 0.58 to 0.66 (95% CI, 0.62-0.68; χ(2) = 27.68; P <0.0001). Although there was no formal evidence of interaction between depression status and GRS, there was further improvement in AUC in the ROC analysis when depression status was added to the model (AUC = 0.71; 95% CI, 0.68-0.73; χ(2) = 28.64; P <0.0001). We further found that the GRS accounted for more variance of BMI in depressed patients than in healthy controls. Again, GRS discriminated obesity better in depressed patients compared to healthy controls. We later replicated these analyses in two independent samples (GSK-Munich and PsyCoLaus) and found similar results. CONCLUSIONS: A GRS proved to be a highly significant predictor of obesity in people with MDD but accounted for only modest amount of variance. Nevertheless, as more risk loci are identified, combining a GRS approach with information on non-genetic risk factors could become a useful strategy in identifying MDD patients at higher risk of developing obesity.
Resumo:
BACKGROUND: Whether being small for gestational age (SGA) increases the risk of adverse neurodevelopmental outcome in premature infants remains controversial. OBJECTIVE: to study the impact of SGA (birthweight < percentile 10) on cognition, behavior, neurodevelopmental impairment and use of therapy at 5 years old. METHODS: This population-based prospective cohort included infants born before 32 weeks of gestation. Cognition was evaluated with the K-ABC, and behavior with the Strengths and Difficulties Questionnaire (SDQ). Primary outcomes were cognitive and behavioral scores, as well as neurodevelopmental impairment (cognitive score < 2SD, hearing loss, blindness, or cerebral palsy). The need of therapy, an indirect indicator of neurodevelopmental impairment, was a secondary outcome. Linear and logistic regression models were used to analyze the association of SGA with neurodevelopment. RESULTS: 342/515 (76%) premature infants were assessed. SGA was significantly associated with hyperactivity scores of the SDQ (coefficient 0.81, p < 0.04), but not with cognitive scores, neurodevelopmental impairment or the need of therapy. Gestational age, socio-economic status, and major brain lesions were associated with cognitive outcome in the univariate and multivariate model, whereas asphyxia, sepsis and bronchopulmonary dysplasia were associated in the univariate model only. Severe impairment was associated with fetal tobacco exposition, asphyxia, gestational age and major brain lesions. Different neonatal factors were associated with the use of single or multiple therapies: children with one therapy were more likely to have suffered birth asphyxia or necrotizing enterocolitis, whereas the need for several therapies was predicted by major brain lesions. DISCUSSION: In this large cohort of premature infants, assessed at 5 years old with a complete panel of tests, SGA was associated with hyperactive behavior, but not with cognition, neurodevelopmental impairment or use of therapy. Birthweight <10th percentile alone does not appear to be an independent risk factor of neurodevelopmental adverse outcome in preterm children.
Resumo:
Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS) models for estimating the area under the plasma concentration versus time curve (AUC) and the peak plasma concentration (Cmax) of 4-methylaminoantipyrine (MAA), an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336), measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC0-¥ and the Cmax of MAA can be accurately predicted (R²>0.95, bias <1.5%, precision between 3.1 and 8.3%) by LSS models based on two sampling times. Validation tests indicate that the most informative 2-point LSS models developed for one formulation provide good estimates (R²>0.85) of the AUC0-¥ or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h), but using different coefficients for AUC0-¥ and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R²>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4%) as well as for plasma concentration data sets generated by simulation (R²>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%). Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC0-¥ and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.
Resumo:
The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.
Resumo:
Relationships between surface sediment diatom assemblages and lake trophic status were studied in 50 Canadian Precambrian Shield lakes in the Muskoka-Haliburton and southern Ontario regions. The purpose of this study was to develop mathematical regression models to infer lake trophic status from diatom assemblage data. To achieve this goal, however, additional investigations dealing with the evaluation of lake trophic status and the autecological features of key diatom species were carried out. Because a unifying index and classification for lake trophic status was not available, a new multiple index was developed in this study, by the computation of the physical, chemical and biological data from 85 south Ontario lakes. By using the new trophic parameter, the lake trophic level (TL) was determined: TL = 1.37 In[1 +(TP x Chl-a / SD)], where, TP=total phosphorus, Chl-a=chlorophyll-a and SD=Secchi depth. The boundaries between 7 lake trophic categories (Ultra-oligotrophic lakes: 0-0.24; Oligotrophic lakes: 0.241-1.8; Oligomesotrophic lakes: 1.813.0; Mesotrophic lakes: 3.01-4.20; Mesoeutrophic lakes: 4.21-5.4; Eutrophic lakes: 5.41-10 and Hyper-eutrophic lakes: above 10) were established. The new trophic parameter was more convenient for management of water quality, communication to the public and comparison with other lake trophic status indices than many of the previously published indices because the TL index attempts to Increase understanding of the characteristics of lakes and their comprehensive trophic states. It is more reasonable and clear for a unifying determination of true trophic states of lakes. Diatom specIes autecology analysis was central to this thesis. However, the autecological relationship of diatom species and lake trophic status had not previously been well documented. Based on the investigation of the diatom composition and variety of species abundance in 30 study lakes, the distribution optima of diatom species were determined. These determinations were based on a quantitative method called "weighted average" (Charles 1985). On this basis, the diatom species were classified into five trophic categories (oligotrophic, oligomesotrophic, mesotrophic, mesoeutrophic and eutrophic species groups). The resulting diatom trophic status autecological features were used in the regressIon analysis between diatom assemblages and lake trophic status. When the TL trophic level values of the 30 lakes were regressed against their fi ve corresponding diatom trophic groups, the two mathematical equations for expressing the assumed linear relationship between the diatom assemblages composition were determined by (1) uSIng a single regression technique: Trophic level of lake (TL) = 2.643 - 7.575 log (Index D) (r = 0.88 r2 = 0.77 P = 0.0001; n = 30) Where, Index D = (0% + OM% + M%)/(E% + ME% + M%); 4 (2) uSIng a' multiple regressIon technique: TL=4.285-0.076 0%- 0.055 OM% - 0.026 M% + 0.033 ME% + 0.065 E% (r=0.89, r2=0.792, P=O.OOOl, n=30) There was a significant correlation between measured and diatom inferred trophic levels both by single and multiple regressIon methods (P < 0.0001, n=20), when both models were applied to another 20 test lakes. Their correlation coefficients (r2 ) were also statistically significant (r2 >0.68, n=20). As such, the two transfer function models between diatoms and lake trophic status were validated. The two models obtained as noted above were developed using one group of lakes and then tested using an entirely different group of lakes. This study indicated that diatom assemblages are sensitive to lake trophic status. As indicators of lake trophic status, diatoms are especially useful in situations where no local trophic information is available and in studies of the paleotrophic history of lakes. Diatom autecological information was used to develop a theory assessing water quality and lake trophic status.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
La question des coûts des soins de santé gagne en intérêt dans le contexte du vieillissement de la population. On sait que les personnes en moins bonne santé, bien que vivant moins longtemps, sont associées à des coûts plus élevés. On s'intéresse aux facteurs associés à des coûts publics des soins de santé plus élevés au niveau individuel, chez les Québécois vivant en ménage privé âgés de 65 ans et plus, présentant au moins un type d’incapacité. À l’aide de modèles de régression, la variation des coûts pour la consultation de professionnels de la santé et la prise de médicaments a été analysée en fonction du nombre d’incapacités ainsi que de la nature de celles-ci. Les informations sur l’état de santé et la situation socio-démographique proviennent de l’Enquête sur les limitations d’activités (EQLA) de 1998, celles sur les coûts du Fichier d’inscription des personnes assurées (FIPA) de la Régie de l’Assurance maladie du Québec (RAMQ), pour la même année. Les résultats montrent que les deux types de coûts considérés augmentent en fonction du nombre d’incapacités. D’autre part, des coûts plus élevés ont été trouvés chez les personnes présentant une incapacité liée à l’agilité concernant la consultation de professionnels de la santé, alors que, concernant la prise de médicaments, le même constat s’applique aux personnes avec une incapacité liée à la mobilité. Les deux types de coûts considérés présentent un niveau plus élevé chez les personnes présentant une incapacité liée au psychisme, en particulier lorsque l’on considère la prise de médicaments. Ces observations soulignent l’intérêt de considérer la nature du problème de santé lorsque l’on étudie les déterminants individuels du niveau des coûts des soins de santé.
Resumo:
This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.