956 resultados para motor development
Resumo:
This study describes the developmental changes in pulmonary surfactant (PS) lipids throughout incubation in the sea turtle, Chelonia mydas. Total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol) harvested from lung washings increased with advancing incubation, where secretion was maximal at pipping, coincident with the onset of pulmonary ventilation. The DSP/PL ratio increased, whereas the Chol/PL and the Chol/DSP ratio declined throughout development. The phospholipids, therefore, are independently regulated from Chol and their development matches that of mammals. To explore whether hypoxia could elicit an effect on the development of the PS system, embryos were exposed to a chronic dose of 17% O-2 for the final similar to 40% of incubation. Hypoxia did not affect incubation time, absolute, nor relative abundance of the surfactant lipids, demonstrating that the development of the system is robust and that embryonic development continues unabated under mild hypoxia. Hypoxia-incubated hatchlings had lighter wet lung weights than those from normoxia, inferring that mild hypoxia facilitates lung clearance in this species. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Frizzled genes encode a family of Wnt ligand receptors, which have a conserved cysteine-rich Wnt binding domain and include both transmembrane and secreted forms. Work by others has shown that experimental perturbation of Wnt signaling results in aberrant hair formation, hair growth, and hair structure. To date, however, there is no information on the contribution of individual Frizzled proteins to hair development. We now report that Frizzled-3 expression in skin is restricted to the epidermis and to the developing hair follicle. Northern analysis on total mouse skin mRNA revealed a single Frizzled-3 transcript of 3.7 kb. Reverse transcription-polymerase chain reaction and in situ hybridization analysis revealed Frizzled-3 expression in epidermal and hair follicle keratinocytes. Frizzled-3 transcripts are first detected in discrete foci in the developing epidermis of 13 d embryos and later in the hair follicle placodes of 15 d embryos, suggesting a role for this Frizzled isoform in follicle development. In 17 d embryos and id old newborn mice Frizzled-3 expression is limited to suprabasal keratinocytes and is not seen in pelage follicles until 3 d postpartum. In 7 d old neonatal skin, Frizzled-3 is expressed throughout the epidermis and in the outer cell layers of hair follicles. We have also identified the mRNA encoding human Frizzled-3 in epidermal keratinocytes and in the HaCaT keratinocyte cell line. Human Frizzled-3 mRNA encodes a 666 amino acid protein with 97.8% identity to the mouse protein. The human Frizzled-3 gene was mapped using a radiation-hybrid cell line panel to the short arm of chromosome 8 between the markers WI-1172 and WI-8496 near the loci for the Hypotrichosis of Marie Unna and Hairless genes.
Resumo:
Theory of Mind (ToM) is the cognitive achievement that enables us to report our propositional attitudes, to attribute such attitudes to others, and to use such postulated or observed mental states in the prediction and explanation of behavior. Most normally developing children acquire ToM between the ages of 3 and 5 years, but serious delays beyond this chronological and mental age have been observed in children with autism, as well is in those with severe sensory impairments. We examine data from Studies of ToM in normally developing children and those with deafness, blindness, autism and Williams syndrome, as well as data from lower primates, in a search for answers to key theoretical questions concerning the origins, nature and representation of knowledge about the mind. In answer to these, we offer a framework according to which ToM is jointly dependent upon language and social experience, and is produced by a conjunction of language acquisition with children's growing social understanding, acquired through conversation and interaction with others. We argue that adequate language and adequate social skills are jointly causally sufficient, and individually causally necessary, for producing ToM. Thus our account supports a social developmental theory of the genesis of human cognition, inspired by the work of Sellars and Vygotsky.
Kindred spirits: Influences of siblings' perspectives on the child's development of a theory of mind
Resumo:
It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks. We review a small number of experiments that provide evidence that resistance training affects the way in which muscles that have been engaged during training are recruited during related movement tasks. The concepts addressed in this article represent an important new approach to research on the effects of resistance training. They are also of considerable practical importance, since most individuals perform resistance training in the expectation that it will enhance their performance in-related functional tasks.
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.
Resumo:
FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta -catenin and A-F-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure Of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta -catenin such that very little of either protein remained following 72 h culture. The residual beta -catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta -catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta -catenin and AF-6 in vivo. (C) 2001 Elsevier Science Ireland Lid. All rights reserved.
Resumo:
Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation. (C) 2001 Academic Press.
Resumo:
The case is presented of a female infant with a distal deletion of 8p (8p23.1 --> pter) whose development was monitored over a 5-year period from 12 months of age. Although previous literature has suggested that 8p deletion is associated with mild to moderate intellectual disability, the child reported here has normal intelligence. Despite initial delays in gross motor and language skills, cognitive development (assessed with the Bayley Scales of Infant Development) and intellectual ability (measured on the Stanford-Binet Intelligence Scale) were within average range. It is argued that the small number of previous case reports may have created a misleading impression of intellectual development in individuals with distal deletions of 8p.