934 resultados para mild mthod
Resumo:
A novel biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-based polyurethanes (PCL-PEG-PU) with pendant amino groups was synthesized by direct coupling of PEG ester of NH2-protected-(aspartic acid) (PEG-Asp-PEG diols) and poly(epsilon-caprolactone) (PCL) diols with hexamethylene dissocyanate (HDI) under mild reaction conditions and by subsequent deprotection of benzyloxycarbonyl (Cbz) groups. GPC, H-1 NMR, and C-13 NMR studies confirmed the polymer structures and the complete deprotection. DSC and WXRD results indicated that the crystallinity of the copolymer was enhanced with increasing PCL diols in the copolymer. The content of amino group in the polymer could be adjusted by changing the molar ratio of PEG-Asp-PEG diols to PCL diols. Thus the results of this study provide a good way to prepare polyurethanes bearing hydrophilic PEG segments and reactive amino groups without complicated synthesis.
Resumo:
A single-crystalline EuF3 nanoflower with a novel three-dimensional (3D) nanostructure has been successfully synthesized via a facile, fast, efficient, and mild ultrasonic irradiation solution route employing the reaction of Eu(NO3)(3) and KBF4 under ambient conditions without any template or surfactant. The ultrasonic irradiation plays an important role and is necessary for the synthesis of EuF3 with the complex structure. The formation mechanism of this complex nanostructure is proposed in this paper. No template or surfactant is used in this method, which avoids the subsequent complicated workup for the removal of the template or surfactant. Furthermore, a substantial reduction in the reaction time as well as the reaction temperature is observed compared with the hydrothermal process.
Resumo:
A family of supramolecular polymers was prepared via Cd2+-directed self-assembly polymerization of his (2,2':6',2 ''-terpyridine)-based ligand monomers, using oligofluorenes and triphenylamine as bridges under mild conditions. The polymers were fully characterized using thermogravimetric analysis, inherent viscosity, electrochemical measurements, UV-visible spectroscopy, photoluminescence (PL) and electroluminescence (EL). Polymers with oligofluorenes as spacers exhibited blue emission (434-442 nm) in dimethyl acetamide (DMAc) solution, while polymers with triphenylamine as spacer presented an emission peak at 494 nn in DMAc solution. Complexation polymerization of bis(2,2':6',2 ''-terpyridine)-based ligand monomers with cadmium(II) improved fluorescence quantum yields dramatically, and the film PL quantum yields of these polymers were about 0.38-0.54. Single-layer light-emitting diodes were fabricated with the configuration indium tin oxide (ITO)/polymer/Ca/Al; the EL showed green emission and the onset voltages of the devices were 8-11 V.
Resumo:
A simple, productive, low-cost route has been developed to synthesize the high-quality 1-D nanorods of CdE (E = Se, Te) with 3-8 nm in diameter and 5-40 nm in length using myristic acid as a complexing agent. Moreover, the reaction is performed under mild conditions and relatively low temperatures. The Xray powder diffraction patterns confirmed the CdE nanorods with wurtzite structure.
Resumo:
Chiral quaternary ammonium salts derived from cinchonidine have been applied to catalyze the stereoselective iodolactonizations of trans-5-aryl-4-pentenoic acids leading to a mixture of two regioselectively iodolactonized products with fair to excellent yield (37-98%) and moderate enantioselectivity (exo = 42.0% ee, endo = 31.0% ee) under mild conditions. This work is the first example of asymmetric iodolactonization reaction in the presence of less than a stoichiometric amount of chiral reagent.
Resumo:
A novel method for reagent-controlled asymmetric iodolactonization of 5-aryl-4-pentenoic acids is reported. This work uses carboxylate ion pairs combined with cinchona alkaloids as chiral sources of carboxylate anion for the first time leading to a mixture of two regio-isomeric iodolactones with moderate enantioselectivity (exo- 18.5% ee, endo-35.0% ee) under mild reaction conditions.
Resumo:
An effective and facile in Situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of An NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAUCl(4) to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.
Resumo:
A series of alpha-diimine nickel(II) complexes containing chloro-substituted ligands, [(Ar)N=C(C10H6)C=N(Ar)]NiBr2 (4a, Ar = 2,3-C6H3Cl2; 4b, Ar = 2,4-C6H3Cl2; 4c, Ar = 2,5-C6H3Cl2; 4d, Ar = 2,6-C6H3Cl2; 4e, Ar = 2,4,6-C6H2Cl3) and [(Ar)N=C(C10H6)C=N(Ar)](2)NiBr2 (5a, Ar = 2,3-C6H3Cl2; 5b, Ar = 2,4-C6H3Cl2; 5c, Ar = 2,5-C6H3Cl2), have been synthesized and investigated as precatalysts for ethylene polymerization. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, these complexes are highly effective catalysts for the oligomerization or polymerization of ethylene under mild conditions. The catalyst activity and the properties of the products were strongly affected by the aryl-substituents of the ligands used. Depending on the catalyst structure, it is possible to obtain the products ranging from linear alpha-olefins to high-molecular weight polyethylenes.
Resumo:
Unusual 3D flower-shaped SnS2 nanostructures have been synthesized using a mild hydrothermal treatment in the presence of octyl-phenol-ethoxylate ( Triton X-100) at 160 degrees C. The nanostructures have an average size of 1 mu m, and consist of interconnected nanosheets with thicknesses of about 40 nm. Based on time-dependent experimental results, we ascribe the oriented attachment mechanism to the growth of the SnS2 nanostructures. The nonionic surfactant Triton X-100 plays a key role in the formation of the flower-like morphology. Room temperature gas-sensing measurements show that the 3D SnS2 nanostructures could serve as sensor materials for the detection of NH3 molecules.
Resumo:
A facile, mild and rapid solid phase synthetic route free of column chromatographic purification to the synthesis of soluble monodisperse long-chain oligo(1,4-phenyleneethynylene)s is presented.
Resumo:
alpha(1)-VOPO4, alpha(II)-VOPO4 and beta-VOPO4 have been investigated as catalysts for the gas phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene with the addition of acetic acid (HOAc) in the feeds in a fixed bed reactor. Different VOPO4 phases showed different acidity and reducibility. beta-VOPO4 phase is more active than alpha(I)-VOPO4 and alpha(II)-VOPO4 in the ODH without acetic acid addition. In the presence of acetic acid, the acidity of the catalyst may play an important role in the ODH process. Due to higher acidity, alpha(I)-VOPO4 phase catalyst gives better catalytic performances than alpha(I)-VOPO4 and beta-VOPO4 for the ODH of cyclohexane by adding of acetic acid in the reactants.
Resumo:
An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.
Resumo:
Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H2PtCL6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH4OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode.
Resumo:
Nanocrystals and powders of KMgF3 doped with Eu2+ were synthesized by the microemulsion method and the solvothermal process, respectively. The emission and excitation spectra of KMgF3:Eu2+ phosphors were measured and compared with those of the samples synthesized through a solid. state reaction, Bridgman-Stockbarger method, and mild hydrothermal technique. The KMgF3: Eu2+ samples synthesized by means of the microemulsion method and the solvothermal process show only a sharp emission peak located at 360 nm, in the emission spectra, which arises from the f -> f(P-6(1/2)-> S-8(1/2)) transition of Eu2+. The broad emission bands appear at 420 nm,,which arises from Eu2+ <- O2- cannot be observed(in the mild hydrothermal and single crystal samples, the emission peak at 420 nm besides the emission of Eu2+ at 360 nm is observed). In the excitation spectrum of the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process, the excitation peaks show an intensive blue shift. The blue shift can he attributed to the lower oxygenic content in the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process.
Resumo:
A facile method for the synthesis of biphenyl polyimides, which involves the nickel-catalyzed coupling of aromatic dichlorides containing imide structure in the presence of zinc and triphenylphosphine, has been developed. The polymerizations proceeded smoothly under mild conditions and produced biphenyl polyimides with inherent viscosities of 0.13-0.98 dL/g. The polymerizations of bis(4-chlorophthalimide)s with bulky side substituents gave high molecular weight polymers. Low molecular weight polymers from bis(4-chlorophthalimide)s containing rigid diamine moieties and bis(3-chlorophthalimide)s were obtained because of the formations of polymer precipitate and cyclic oligoimides, respectively. The effects of various factors, such as amount of catalyst, solvent volume, ligand, reaction temperature, and time, on the polymerization were studied. The random copolymerization of two bis(chlorophthalimide)s in varying proportions produced medium molecular weight material. The TgS of prepared polyimides were observed at 245-311 degreesC, and the thermogravimetry of polymers showed 10% weight loss in nitrogen at 470-530 degreesC.