923 resultados para measurement of microvibration
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present the first model-independent measurement of the helicity of W bosons produced in top quark decays, based on a 1 fb(-1) sample of candidate t (t) over bar events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron p (p) over bar Collider. We reconstruct the angle theta(*) between the momenta of the down-type fermion and the top quark in the W boson rest frame for each top quark decay. A fit of the resulting cos theta(*) distribution finds that the fraction of longitudinal W bosons f(0)=0.425 +/- 0.166(stat)+/- 0.102(syst) and the fraction of right-handed W bosons f(+)=0.119 +/- 0.090(stat)+/- 0.053(syst), which is consistent at the 30% C.L. with the standard model.
Resumo:
We present the first measurement of the integrated forward-backward charge asymmetry in top-quark-top-antiquark pair (t (t) over bar) production in proton-antiproton (p (p) over bar) collisions in the lepton+jets final state. Using a b-jet tagging algorithm and kinematic reconstruction assuming t (t) over bar +X production and decay, a sample of 0.9 fb(-1) of data, collected by the D0 experiment at the Fermilab Tevatron Collider, is used to measure the asymmetry for different jet multiplicities. The result is also used to set upper limits on t (t) over bar +X production via a Z' resonance.
Resumo:
We measure the t (t) over bar production cross section in p (p) over bar collisions at root s = 1.96 TeV in the lepton + jets channel. Two complementary methods discriminate between signal and background: b tagging and a kinematic likelihood discriminant. Based on 0.9 fb(-1) of data collected by the D0 detector at the Fermilab Tevatron Collider, we measure sigma(t (t) over bar) = 7.62 +/- 0.85 pb, assuming the current world average m(t) = 172.6 GeV. We compare our cross section measurement with theory predictions to determine a value for the top-quark mass of 170 +/- 7 GeV.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)