950 resultados para m-learning standards
Resumo:
This article examines the extent and limits of nonstate forms of authority in international relations. It analyzes how the information and communication technology (ICT) infrastructure for the tradability of services in a global knowledge-based economy relies on informal regulatory practices for the adjustment of ICT-related skills. By focusing on the challenge that highly volatile and short-lived cycles of demands for this type of knowledge pose for ensuring the right qualification of the labor force, the article explores how companies and associations provide training and certification programs as part of a growing market for educational services setting their own standards. The existing literature on non-conventional forms of authority in the global political economy has emphasized that the consent of actors, subject to informal rules and some form of state support, remains crucial for the effectiveness of those new forms of power. However, analyses based on a limited sample of actors tend toward a narrow understanding of the issues concerned and fail to fully explore the differentiated space in which non state authority is emerging. This article develops a three-dimensional analytical framework that brings together the scope of the issues involved, the range of nonstate actors concerned, and the spatial scope of their authority. The empirical findings highlight the limits of these new forms of nonstate authority and shed light on the role of the state and international governmental organizations in this new context.
Resumo:
Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Resumo:
In this paper we propose a novel unsupervised approach to learning domain-specific ontologies from large open-domain text collections. The method is based on the joint exploitation of Semantic Domains and Super Sense Tagging for Information Retrieval tasks. Our approach is able to retrieve domain specific terms and concepts while associating them with a set of high level ontological types, named supersenses, providing flat ontologies characterized by very high accuracy and pertinence to the domain.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre(®) YeastOne? test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
This paper reports on the purpose, design, methodology and target audience of E-learning courses in forensic interpretation offered by the authors since 2010, including practical experiences made throughout the implementation period of this project. This initiative was motivated by the fact that reporting results of forensic examinations in a logically correct and scientifically rigorous way is a daily challenge for any forensic practitioner. Indeed, interpretation of raw data and communication of findings in both written and oral statements are topics where knowledge and applied skills are needed. Although most forensic scientists hold educational records in traditional sciences, only few actually followed full courses that focussed on interpretation issues. Such courses should include foundational principles and methodology - including elements of forensic statistics - for the evaluation of forensic data in a way that is tailored to meet the needs of the criminal justice system. In order to help bridge this gap, the authors' initiative seeks to offer educational opportunities that allow practitioners to acquire knowledge and competence in the current approaches to the evaluation and interpretation of forensic findings. These cover, among other aspects, probabilistic reasoning (including Bayesian networks and other methods of forensic statistics, tools and software), case pre-assessment, skills in the oral and written communication of uncertainty, and the development of independence and self-confidence to solve practical inference problems. E-learning was chosen as a general format because it helps to form a trans-institutional online-community of practitioners from varying forensic disciplines and workfield experience such as reporting officers, (chief) scientists, forensic coordinators, but also lawyers who all can interact directly from their personal workplaces without consideration of distances, travel expenses or time schedules. In the authors' experience, the proposed learning initiative supports participants in developing their expertise and skills in forensic interpretation, but also offers an opportunity for the associated institutions and the forensic community to reinforce the development of a harmonized view with regard to interpretation across forensic disciplines, laboratories and judicial systems.
Resumo:
The Iowa Law Enforcement Academy Council, in recognizing the importance of physical fitness status for job performance, established this physical test regimen as a employment standard effective February 15, 1993. No person can be selected or appointed as a law enforcement officer without first successfully passing all of the elements of this test. (See 501 IAC 2.1, adopted pursuant to Section 80B.11(5), Code of Iowa.) Upon entry into the Academy every candidate will be given the same test as an assessment for training purposes and to ensure that each recruit can undergo the physical demands of the Academy without undue risk of injury, and with a level of fatigue tolerance to meet all Academy requirements. If at the time of entrance into the Academy an officer does not meet minimum standards, he or she will not be admitted. This pamphlet will provide information on the rationale, purpose, testing procedures, standards of performance and fitness activities to prepare for the fitness testing. It is intended to answer the basic questions pertaining to all aspects of the fitness testing process.
Resumo:
Introduction: Evidence-based medicine (EBM) improves the quality of health care. Courses on how to teach EBM in practice are available, but knowledge does not automatically imply its application in teaching. We aimed to identify and compare barriers and facilitators for teaching EBM in clinical practice in various European countries. Methods: A questionnaire was constructed listing potential barriers and facilitators for EBM teaching in clinical practice. Answers were reported on a 7-point Likert scale ranging from not at all being a barrier to being an insurmountable barrier. Results: The questionnaire was completed by 120 clinical EBM teachers from 11 countries. Lack of time was the strongest barrier for teaching EBM in practice (median 5). Moderate barriers were the lack of requirements for EBM skills and a pyramid hierarchy in health care management structure (median 4). In Germany, Hungary and Poland, reading and understanding articles in English was a higher barrier than in the other countries. Conclusion: Incorporation of teaching EBM in practice faces several barriers to implementation. Teaching EBM in clinical settings is most successful where EBM principles are culturally embedded and form part and parcel of everyday clinical decisions and medical practice.
Resumo:
Independent auditor’s report of the State of Iowa on internal control over financial reporting and on compliance and other matters based on an audit of financial statements performed in accordance with government auditing standards for the year ended June 30, 2011
Resumo:
The present research deals with an application of artificial neural networks for multitask learning from spatial environmental data. The real case study (sediments contamination of Geneva Lake) consists of 8 pollutants. There are different relationships between these variables, from linear correlations to strong nonlinear dependencies. The main idea is to construct a subsets of pollutants which can be efficiently modeled together within the multitask framework. The proposed two-step approach is based on: 1) the criterion of nonlinear predictability of each variable ?k? by analyzing all possible models composed from the rest of the variables by using a General Regression Neural Network (GRNN) as a model; 2) a multitask learning of the best model using multilayer perceptron and spatial predictions. The results of the study are analyzed using both machine learning and geostatistical tools.