957 resultados para load-balancing scheduling
Resumo:
A novel implementation of a tag sorting circuit for a weighted fair queueing (WFQ) enabled Internet Protocol (IP) packet scheduler is presented. The design consists of a search tree, matching circuitry, and a custom memory layout. It is implemented using 130-nm silicon technology and supports quality of service (QoS) on networks at line speeds of 40 Gb/s, enabling next generation IP services to be deployed.
Resumo:
Computational modelling is becoming ever more important for obtaining regulatory approval for new medical devices. An accepted approach is to infer performance in a population from an analysis conducted for an idealised or ‘average’ patient; we present here a method for predicting the performance of an orthopaedic implant when released into a population—effectively simulating a clinical trial. Specifically we hypothesise that an analysis based on a method for predicting the performance in a population will lead to different conclusions than an analysis based on an idealised or ‘average’ patient. To test this hypothesis we use a finite element model of an intramedullary implant in a bone whose size and remodelling activity is different for each individual in the population. We compare the performance of a low Young’s modulus implant (View the MathML source) to one with a higher Young’s modulus (200 GPa). Cyclic loading is applied and failure is assumed when the migration of the implant relative to the bone exceeds a threshold magnitude. The analysis for an idealised of ‘average’ patient predicts that the lower modulus device survives longer whereas the analysis simulating a clinical trial predicts no statistically-significant tendency (p=0.77) for the low modulus device to perform better. It is concluded that population-based simulations of implant performance–simulating a clinical trial–present a very valuable opportunity for more realistic computational pre-clinical testing of medical devices.
Resumo:
A full hardware implementation of a Weighted Fair Queuing (WFQ) packet scheduler is proposed. The circuit architecture presented has been implemented using Altera Stratix II FPGA technology, utilizing RLDII and QDRII memory components. The circuit can provide fine granularity Quality of Service (QoS) support at a line throughput rate of 12.8Gb/s in its current implementation. The authors suggest that, due to the flexible and scalable modular circuit design approach used, the current circuit architecture can be targeted for a full ASIC implementation to deliver 50 Gb/s throughput. The circuit itself comprises three main components; a WFQ algorithm computation circuit, a tag/time-stamp sort and retrieval circuit, and a high throughput shared buffer. The circuit targets the support of emerging wireline and wireless network nodes that focus on Service Level Agreements (SLA's) and Quality of Experience.
Resumo:
The objective of this study was to determine the sedative load and use of sedative and psychotropic medications among older people with dementia living in (residential) care homes.
Resumo:
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon approaching the complete failure of the bundle, the breaking rate of fibers diverges according to r(t)proportional to(T-f-t)(-xi) where T-f is the lifetime of the bundle and xi approximate to 1.0 is a universal scaling exponent. The average lifetime of the bundle [T-f] scales with the system size as N-delta, where delta depends on the distribution of individual fiber as well as the breakdown rule. [S1063-651X(99)13902-3].
Resumo:
We develop a recursion-relation approach for calculating the failure probabilities of a fiber bundle with local load sharing. This recursion relation is exact, so it provides a way to test the validity of the various approximate methods. Applying the exact calculation to uniform and Weibull threshold distributions, we find that the most probable failure load coincides with the average strength as the size of the system N --> infinity.
Resumo:
A critical load x(c) is introduced into the fiber-bundle model with local load-sharing. The critical load is defined as the average load per fiber that causes the final complete failure. It is shown that x(c) --> 0 when the size of the system N --> infinity. A power law for the burst-size distribution, D(DELTA) is-proportional-to DELTA(-xi) is approximately correct. The exponent xi is not universal, since it depends on the strength distribution as well as the size of the system.
Resumo:
Globally on-shore wind power has seen considerable growth in all grid systems. In the coming decade off-shore wind power is also expected to expand rapidly. Wind power is variable and intermittent over various time scales because it is weather dependent. Therefore wind power integration into traditional grids needs additional power system and electricity market planning and management for system balancing. This extra system balancing means that there is additional system costs associated with wind power assimilation. Wind power forecasting and prediction methods are used by system operators to plan unit commitment, scheduling and dispatch and by electricity traders and wind farm owners to maximize profit. Accurate wind power forecasting and prediction has numerous challenges. This paper presents a study of the existing and possible future methods used in wind power forecasting and prediction for both on-shore and off-shore wind farms.