983 resultados para industry concentration
Resumo:
Concentration distribution in crystallization from solution under microgravity is numerically studied. A quasi-steady state growth and dissolution in a 2D rectangular enclosure filled with sodium chlorate (NaClO3) aqueous solution, in which one wall is the growth surface of the crystal and the opposite one is the dissolution surface, is considered. The solute transport process at the growth surface is described by the diffusion-reaction theory with finite interface kinetics coefficient. The results show that the concentration at the growth surface is supersaturated and the supersaturation distribution is of non-uniformity, i.e. the supersaturation in a region facing an incoming flow is high. On the other hand, the non-uniformity of supersaturation at the growth surface is closely related to the gravity level even under microgravity, it exponentially increases as the thermal Rayleigh number on behalf of the gravity level rises.
Resumo:
A new thermoplastic-photoconductor laser holographic recording system has been used for real-time and in situ observation of alpha-LiIO3 crystal growth. The influence of crystallization-driven convection on the concentration stratification in solution has been studied under gravity field. It is found that the stratification is closely related to the seed orientation of alpha-LiIO3 crystal. When the optical axis of crystal seed C is parallel to the gravity vector g, the velocity of the concentration stratification is two times larger than that in the case of C perpendicular-to g. It needs 40 h for the crystalline system of alpha-LiIO3 to reach stable concentration distribution (expressed as tau) at 47.6-degrees-C. The time tau is not sensitive to the seed orientation. Our results provide valuable data for designing the crystal growth experiments ia space.
Resumo:
The maximum stress concentration factor in brittle materials with a high concentration of cavities is obtained. The interaction between the nearest cavities, in addition to the far field interactions, is taken into account to evaluate the strength distribution based on the statistical analysis of the nearest distance distribution. Through this investigation, it is found that the interaction between the nearest neighbors is much more important than the far field interactions, and one has to consider it in calculating the strength of brittle materials even if the volume fraction of cavities it contains is small. The other important conclusion is that the maximum stress concentration factor has a wide scattered distribution.
Resumo:
The results of experiments in open channels and closed pipelines show two kinds of patterns for the vertical distribution of particle concentration (i.e., pattern I and pattern II). The former shows a pattern of maximum concentration at some location above the bottom and the downward decay of the concentration below the location. The latter always shows an increase of the particle concentration downward over the whole vertical, with the maximum value at the bottom. Many investigations were made on the pattern II, but few were made on pattern I. In this paper, a particle velocity distribution function is first obtained in the equilibrium state or in dilute steady state for the particle in two-phase flows, then a theoretical model for the particle concentration distribution is derived from the kinetic theory. More attention is paid to the predictions of the concentration distribution of pattern I and comparisons of the present model are made with the data measured by means of laser doppler anemometry (LDA). Very good agreements are obtained between the measured and calculated results.
Resumo:
The results presented are obtained from sound velocity measurements, uniaxial compression tests, Brazilian tests and three-point bending tests. The density of microcracks in the heated rock is studied by means of optical microscopy, SEM and differential strain analysis (DSA).
Resumo:
The problem of the concentration jump of a vapour in the vicinity of a plane wall, which consists of the condensed phase of the vapour, in a rarefied gas mixture of that vapour (A) and another 'inert' gas (B), is considered. The general formulation of the problem of determining the concentration-jump coefficient for dA is given. In the Knudsen layer the simplest model of Boley-Yip theory is used to simplify the Boltzmann equations for the binary gas mixture. The numerical calculation of the concentration jump coefficient for dA for various values of evaporation coefficient of A is illustrated for the case of the equilibrium concentration of B being much greater than that of A, for which experimental data are available.
Resumo:
(11 page pamphlet)