983 resultados para inductively coupled plasma
Resumo:
The solubility of Re and Au in haplobasaltic melt has been investigated at 1673-2573 K, 0.1 MPa-2 GPa and IW-1 to +2.5, in both carbon-saturated and carbon-free systems. Results extend the existing, low pressure and temperature, dataset to more accurately predict the results of metal-silicate equilibrium at the base of a terrestrial magma ocean. Solubilities in run-product glasses were measured by laser ablation ICP-MS, which allows for the explicit assessment of contamination by metal inclusions. The Re and Au content of demonstrably contaminant-free glasses increases with temperature, and shows variation with oxygen fugacity (fO2) similar to previous results, although lower valence states for Re (1+, 2+) are suggested by the data. At 2 GPa, and Delta IW of +1.75 to +2, the metal-silicate partition coefficient for Re (DMet/Sil) is defined by the relation LogD[met/sil][Re] = 0.50(±0.022)*10**4/T(K)+3.73(±0.095) For metal-silicate equilibrium to endow Earth's mantle with the observed time-integrated chondritic Re/Os, (and hence 187Os/188Os), DMet/Sil for both elements must converge to a common value. Combined with previously measured DMet/Sil for Os, the estimated temperature at which this convergence occurs is 4500 (±900) K. At this temperature, however, the Re and Os content of the equilibrated silicate is ~100-fold too low to explain mantle abundances. In the same experiments, much lower Dmet/sil values have been determined for Au, and require the metal-silicate equilibration temperature to be <3200 K, as hotter conditions result in an excess of Au in the mantle. Thus, the large disparity in partitioning between Re or Os, and Au at core-forming temperatures argues against their mantle concentrations set solely by metal-silicate equilibrium at the base of a terrestrial magma ocean.
Resumo:
Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.
Resumo:
Age-progressive, linear seamount chains in the northeast Pacific appear to have formed as the Pacific plate passed over a set of stationary hotspots; however, some anomalously young ages and the lack of an "enriched" isotopic signature in basalts from the seamounts do not fit the standard hotspot model. For example, published ages (28-30 Ma) for basalts dredged from the Patton-Murray seamount platform in the Gulf of Alaska are 2-4 m.y. younger than the time when the platform was above the Cobb hotspot. However, the lowermost basalt recovered by ocean drilling on Patton-Murray yielded a 40Ar-39Ar age of 33 Ma. This age exactly coincides with the time when the seamount platform was above the Cobb hotspot, consistent with a stationary, long-lived mantle plume. A 27 Ma alkalic basalt flow recovered 8 m above the 33 Ma basalt is similar in age and composition to the previously dredged basalts, and may be the alkalic capping phase typical of many hotspot volcanoes. A 17 Ma tholeiitic basalt sill recovered 5 m above the 27 Ma basalt was emplaced long after the seamount platform moved away from the hotspot, and may be associated with a period of intraplate extension. Anomalously young phases of volcanism on this and other hotspot seamounts suggest that they can be volcanically rejuvenated by nonhotspot causes, but this rejuvenation does not rule out the hotspot model as an explanation for the initial creation of the seamount platform. The lack of an "enriched" isotopic signature in any of these basalts shows that enriched compositions are not necessary characteristics of plume-related basalts. The isotopic compositions of the lower basalts are slightly more depleted than the 0-9 Ma products of the Cobb hotspot, despite the fact that the hotspot was closer to a spreading ridge at 0-9 Ma. It appears that this hotspot, like several others, has become more enriched with time.