983 resultados para fuzzy implications
Resumo:
Este trabalho investiga a implementação de sistemas fuzzy com circuitos eletrônicos. Tais sistemas têm demonstrado sua capacidade de resolver diversos tipos de problemas em várias aplicações de engenharia, em especial nas relacionadas com controle de processos. Para processos mais complexos, o raciocínio aproximado da lógica fuzzy fornece uma maneira de compreender o comportamento do sistema, permitindo a interpolação aproximada entre situações observadas de entrada e saída. A implementação de um sistema fuzzy pode ser baseada em hardware, em software ou em ambos. Tipicamente, as implementações em software utilizam ambientes de programação integrados com simulação, de modo a facilitar o trabalho do projetista. As implementações em hardware, tradicionais ou evolutivas, podem ser analógicas ou digitais e viabilizam sistemas de maior desempenho. Este trabalho tem por objetivo pesquisar a implementação eletrônica de sistemas fuzzy, a fim de viabilizar a criação de sistemas reais capazes de realizar o mapeamento de entrada e saída adequado. O foco é a utilização de uma plataforma com uma arquitetura analógico-digital baseada em uma tabela de mapeamento armazenada em uma memória de alta capacidade. Memórias do tipo SD (Secure Digital) foram estudadas e utilizadas na construção do protótipo eletrônico da plataforma. Também foram desenvolvidos estudos sobre a quantização, especificamente sobre a possibilidade de redução do número de bits. Com a implementação realizada é possível desenvolver um sistema fuzzy num ambiente simulado (Matlab), configurar a plataforma e executar o sistema fuzzy diretamente na plataforma eletrônica. Os testes com o protótipo construído comprovaram seu bom funcionamento.
Resumo:
Neste trabalho apresenta-se o modelo de um controlador baseado em Lógica Fuzzy para um sistema de energia baseado em fonte renovável solar fotovoltaica (photovoltaic - PV) multi-string em operação isolada, para o aproveitamento da máxima potência desta fonte. O sistema é composto por painéis solares, conversor CC-CC tipo elevador de tensão (boost), armazenamento por banco de baterias, inversor trifásico e carga trifásica variável. O sistema fotovoltaico foi modelado no MATLAB/Simulink de forma a representar a curva característica V-I do módulo PV, e que é baseado nos dados disponíveis em data-sheets de painéis fotovoltaicos comerciais. Outros estudos de natureza elétrica tais como o cálculo dos valores eficazes das correntes no conversor CC-CC, para avaliação das perdas, indispensáveis para o dimensionamento de componentes eletrônicos, foram realizados. O método tradicional Perturb and Observe de rastreamento do ponto de máxima potência (Maximum Power Point Tracking MPPT) de painéis foi testado e comparado com métodos que usam a Lógica Fuzzy. Devido ao seu desempenho, foi adotado o método Fuzzy que realiza o MPPT por inferência do ciclo de trabalho de um modulador por largura de pulso (Pulse Width Modulation - PWM) através da variação da potência pela variação da corrente do painel solar. O modelo Fuzzy adotado neste trabalho foi testado com sucesso. Os resultados mostraram que ele pode ser robusto e atende à aplicação proposta. Segundo alguns testes realizados, este controlador pode realizar o MPPT de um sistema PV na configuração multi-string onde alguns arranjos fotovoltaicos são usados. Inclusive, este controle pode ser facilmente adaptado para realizar o MPPT de outras fontes de energia baseados no mesmo princípio de controle, como é o caso do aerogerador.
Resumo:
Geração e Simplificação da Base de Conhecimento de um Sistema Híbrido Fuzzy- Genético propõe uma metodologia para o desenvolvimento da base de conhecimento de sistemas fuzzy, fundamentada em técnicas de computação evolucionária. Os sistemas fuzzy evoluídos são avaliados segundo dois critérios distintos: desempenho e interpretabilidade. Uma metodologia para a análise de problemas multiobjetivo utilizando a Lógica Fuzzy foi também desenvolvida para esse fim e incorporada ao processo de avaliação dos AGs. Os sistemas fuzzy evoluídos foram avaliados através de simulações computacionais e os resultados obtidos foram comparados com os obtidos por outros métodos em diferentes tipos de aplicações. O uso da metodologia proposta demonstrou que os sistemas fuzzy evoluídos possuem um bom desempenho aliado a uma boa interpretabilidade da sua base de conhecimento, tornando viável a sua utilização no projeto de sistemas reais.
Resumo:
Esta dissertaçãoo investiga a utilização de Particle Swarm Optimization (PSO) para a obtenção automática de sistemas fuzzy do tipo Mamdani, tendo como insumo apenas as definições das variáveis do problema, seus domínios e a função objetivo. Neste trabalho utilizam-se algumas técnicas conhecidas na tentativa de minimizar a obtenção de sistemas fuzzy que não sejam coerentes. As principais técnicas usadas são o método de Wang e Mendell, chamado de WM, para auxiliar na obtenção de regras, e os conceitos de clusterização para obtenção das funções de pertinência. Na função de avaliação proposta, considera-se não somente a acurácia do sistema fuzzy, através da medida do erro, mas também a sua interpretabilidade, através da medida da compacidade, que consiste da quantidade de regras e funções membro, da distinguibilidade, que permite evitar que as funções membro não se confundam, e da completude, que permite avaliar que as funções membro abranjam o máximo do domínio. O propósito deste trabalho consiste no desenvolvimento de um algoritmo baseado em PSO, cuja função de avaliação congregue todos esses objetivos. Com parâmetros bem definidos, o algoritmo pode ser utilizado em diversos tipos de problemas sem qualquer alteração, tornando totalmente automática a obtenção de sistemas fuzzy. Com este intuito, o algoritmo proposto é testado utilizando alguns problemas pré-selecionados, que foram classificados em dois grupos, com base no tipo de função: contínua ou discreta. Nos testes com funções contínuas, são utilizados sistemas tridimensionais, com duas variáveis de entrada e uma de saída, enquanto nos testes com funções discretas são utilizados problemas de classificação, sendo um com quatro variáveis e outro com seis variáveis de entrada. Os resultados gerados pelo algoritmo proposto são comparados com aqueles obtidos em outros trabalhos.
Resumo:
Extensive mortalities of oysters, Crassostrea virginica, occurred from 1985 through 1987 in coastal waters of Georgia. Fluid thioglycolate cultures of oysters collected from 16 of 17 locations revealed infections by the apicomplexan parasite Perkinsus marinus. An ascetosporan parasite, Haplosporidium nelsoni, was also observed in histopathological examination of oysters from 4 of the locations. While the range of H. nelsoni currently is recognized as the east coast of the United States from Maine to Florida, this is the first report of the parasite in Georgia waters. This paper documents the occurrence of these two lethal parasites in oysters from coastal waters of Georgia, along with potential disease and management implications. Results of an earlier independent and previously unpublished survey are also discussed which document the presence of P. marinus in Georgia as early as 1966.
Resumo:
The groundfish resources of the U.S. Exclusive Economic Zone (EEZ) off Alaska, dominated by Alaska or walleye pollock, Theragra chalcogramma, Pacific cod, Gadus macrocephalus, and flatfishes, Pleuronectidae, can sustain annual commercial harvests well in excess of 2 million metric tons (t). As recently as 1979, foreign fisheries took 99 percent of the annual harvest supported by these resources. This has changed dramatically during the 1980's. The foreign fisheries have received rapidly decreasing allocations, first as joint venture fisheries expanded and, more recently, as the domestic fisheries have grown. Joint venture fisheries are fisheries in which domestic fishing vessels deliver their catch directly to foreign processing vessels in the EEZ. By 1986, the joint venture and domestic fisheries accounted for 66 percent and 8 percent, respectively, of the annual harvest. The preliminary corresponding figures for 1987 are 78 and 18 percent.
Resumo:
Esta dissertação apresenta um sistema de indução de classificadores fuzzy. Ao invés de utilizar a abordagem tradicional de sistemas fuzzy baseados em regras, foi utilizado o modelo de Árvore de Padrões Fuzzy(APF), que é um modelo hierárquico, com uma estrutura baseada em árvores que possuem como nós internos operadores lógicos fuzzy e as folhas são compostas pela associação de termos fuzzy com os atributos de entrada. O classificador foi obtido sintetizando uma árvore para cada classe, esta árvore será uma descrição lógica da classe o que permite analisar e interpretar como é feita a classificação. O método de aprendizado originalmente concebido para a APF foi substituído pela Programação Genética Cartesiana com o intuito de explorar melhor o espaço de busca. O classificador APF foi comparado com as Máquinas de Vetores de Suporte, K-Vizinhos mais próximos, florestas aleatórias e outros métodos Fuzzy-Genéticos em diversas bases de dados do UCI Machine Learning Repository e observou-se que o classificador APF apresenta resultados competitivos. Ele também foi comparado com o método de aprendizado original e obteve resultados comparáveis com árvores mais compactas e com um menor número de avaliações.
Resumo:
A extração de regras de associação (ARM - Association Rule Mining) de dados quantitativos tem sido pesquisa de grande interesse na área de mineração de dados. Com o crescente aumento das bases de dados, há um grande investimento na área de pesquisa na criação de algoritmos para melhorar o desempenho relacionado a quantidade de regras, sua relevância e a performance computacional. O algoritmo APRIORI, tradicionalmente usado na extração de regras de associação, foi criado originalmente para trabalhar com atributos categóricos. Geralmente, para usá-lo com atributos contínuos, ou quantitativos, é necessário transformar os atributos contínuos, discretizando-os e, portanto, criando categorias a partir dos intervalos discretos. Os métodos mais tradicionais de discretização produzem intervalos com fronteiras sharp, que podem subestimar ou superestimar elementos próximos dos limites das partições, e portanto levar a uma representação imprecisa de semântica. Uma maneira de tratar este problema é criar partições soft, com limites suavizados. Neste trabalho é utilizada uma partição fuzzy das variáveis contínuas, que baseia-se na teoria dos conjuntos fuzzy e transforma os atributos quantitativos em partições de termos linguísticos. Os algoritmos de mineração de regras de associação fuzzy (FARM - Fuzzy Association Rule Mining) trabalham com este princípio e, neste trabalho, o algoritmo FUZZYAPRIORI, que pertence a esta categoria, é utilizado. As regras extraídas são expressas em termos linguísticos, o que é mais natural e interpretável pelo raciocício humano. Os algoritmos APRIORI tradicional e FUZZYAPRIORI são comparado, através de classificadores associativos, baseados em regras extraídas por estes algoritmos. Estes classificadores foram aplicados em uma base de dados relativa a registros de conexões TCP/IP que destina-se à criação de um Sistema de Detecção de Intrusos.
Resumo:
Esta dissertação testa e compara dois tipos de modelagem para previsão de uma mesma série temporal. Foi observada uma série temporal de distribuição de energia elétrica e, como estudo de caso, optou-se pela região metropolitana do Estado da Bahia. Foram testadas as combinações de três variáveis exógenas em cada modelo: a quantidade de clientes ligados na rede de distribuição de energia elétrica, a temperatura ambiente e a precipitação de chuvas. O modelo linear de previsão de séries temporais utilizado foi um SARIMAX. A modelagem de inteligência computacional utilizada para a previsão da série temporal foi um sistema de Inferência Fuzzy. Na busca de um melhor desempenho, foram feitos testes de quais variáveis exógenas melhor influenciam no comportamento da energia distribuída em cada modelo. Segundo a avaliação dos testes, o sistema Fuzzy de previsão foi o que obteve o menor erro. Porém dentre os menores erros, os resultados dos testes também indicaram diferentes variáveis exógenas para cada modelo de previsão.