937 resultados para fractional differential equations with impulses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and proliferation of invasive bacteria in engineered systems is an ongoing problem. While there are a variety of physical and chemical processes to remove and inactivate bacterial pathogens, there are many situations in which these tools are no longer effective or appropriate for the treatment of a microbial target. For example, certain strains of bacteria are becoming resistant to commonly used disinfectants, such as chlorine and UV. Additionally, the overuse of antibiotics has contributed to the spread of antibiotic resistance, and there is concern that wastewater treatment processes are contributing to the spread of antibiotic resistant bacteria.

Due to the continually evolving nature of bacteria, it is difficult to develop methods for universal bacterial control in a wide range of engineered systems, as many of our treatment processes are static in nature. Still, invasive bacteria are present in many natural and engineered systems, where the application of broad acting disinfectants is impractical, because their use may inhibit the original desired bioprocesses. Therefore, to better control the growth of treatment resistant bacteria and to address limitations with the current disinfection processes, novel tools that are both specific and adaptable need to be developed and characterized.

In this dissertation, two possible biological disinfection processes were investigated for use in controlling invasive bacteria in engineered systems. First, antisense gene silencing, which is the specific use of oligonucleotides to silence gene expression, was investigated. This work was followed by the investigation of bacteriophages (phages), which are viruses that are specific to bacteria, in engineered systems.


For the antisense gene silencing work, a computational approach was used to quantify the number of off-targets and to determine the effects of off-targets in prokaryotic organisms. For the organisms of Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv the mean number of off-targets was found to be 15.0 + 13.2 and 38.2 + 61.4, respectively, which results in a reduction of greater than 90% of the effective oligonucleotide concentration. It was also demonstrated that there was a high variability in the number of off-targets over the length of a gene, but that on average, there was no general gene location that could be targeted to reduce off-targets. Therefore, this analysis needs to be performed for each gene in question. It was also demonstrated that the thermodynamic binding energy between the oligonucleotide and the mRNA accounted for 83% of the variation in the silencing efficiency, compared to the number of off-targets, which explained 43% of the variance of the silencing efficiency. This suggests that optimizing thermodynamic parameters must be prioritized over minimizing the number of off-targets. In conclusion for the antisense work, these results suggest that off-target hybrids can account for a greater than 90% reduction in the concentration of the silencing oligonucleotides, and that the effective concentration can be increased through the rational design of silencing targets by minimizing off-target hybrids.

Regarding the work with phages, the disinfection rates of bacteria in the presence of phages was determined. The disinfection rates of E. coli K12 MG1655 in the presence of coliphage Ec2 ranged up to 2 h-1, and were dependent on both the initial phage and bacterial concentrations. Increasing initial phage concentrations resulted in increasing disinfection rates, and generally, increasing initial bacterial concentrations resulted in increasing disinfection rates. However, disinfection rates were found to plateau at higher bacterial and phage concentrations. A multiple linear regression model was used to predict the disinfection rates as a function of the initial phage and bacterial concentrations, and this model was able to explain 93% of the variance in the disinfection rates. The disinfection rates were also modeled with a particle aggregation model. The results from these model simulations suggested that at lower phage and bacterial concentrations there are not enough collisions to support active disinfection rates, which therefore, limits the conditions and systems where phage based bacterial disinfection is possible. Additionally, the particle aggregation model over predicted the disinfection rates at higher phage and bacterial concentrations of 108 PFU/mL and 108 CFU/mL, suggesting other interactions were occurring at these higher concentrations. Overall, this work highlights the need for the development of alternative models to more accurately describe the dynamics of this system at a variety of phage and bacterial concentrations. Finally, the minimum required hydraulic residence time was calculated for a continuous stirred-tank reactor and a plug flow reactor (PFR) as a function of both the initial phage and bacterial concentrations, which suggested that phage treatment in a PFR is theoretically possible.

In addition to determining disinfection rates, the long-term bacterial growth inhibition potential was determined for a variety of phages with both Gram-negative and Gram-positive bacteria. It was determined, that on average, phages can be used to inhibit bacterial growth for up to 24 h, and that this effect was concentration dependent for various phages at specific time points. Additionally, it was found that a phage cocktail was no more effective at inhibiting bacterial growth over the long-term than the best performing phage in isolation.

Finally, for an industrial application, the use of phages to inhibit invasive Lactobacilli in ethanol fermentations was investigated. It was demonstrated that phage 8014-B2 can achieve a greater than 3-log inactivation of Lactobacillus plantarum during a 48 h fermentation. Additionally, it was shown that phages can be used to protect final product yields and maintain yeast viability. Through modeling the fermentation system with differential equations it was determined that there was a 10 h window in the beginning of the fermentation run, where the addition of phages can be used to protect final product yields, and after 20 h no additional benefit of the phage addition was observed.

In conclusion, this dissertation improved the current methods for designing antisense gene silencing targets for prokaryotic organisms, and characterized phages from an engineering perspective. First, the current design strategy for antisense targets in prokaryotic organisms was improved through the development of an algorithm that minimized the number of off-targets. For the phage work, a framework was developed to predict the disinfection rates in terms of the initial phage and bacterial concentrations. In addition, the long-term bacterial growth inhibition potential of multiple phages was determined for several bacteria. In regard to the phage application, phages were shown to protect both final product yields and yeast concentrations during fermentation. Taken together, this work suggests that the rational design of phage treatment is possible and further work is needed to expand on this foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. METHODS: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. OUTCOMES AND CONCLUSIONS: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sufficient conditions for the exponential stability of a class ofnonlinear, non-autonomous stochastic differential equations in infinitedimensions are studied. The analysis consists of introducing a suitableapproximating solution systems and using a limiting argument to pass onstability of strong solutions to mild ones. As a consequence, the classicalcriteriaof stability in A. Ichikawa [8] are improved and extended to cover a class ofnon-autonomous stochastic evolution equations.Two examples are investigated to illustrate our theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air qualityand support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition–resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainlybased on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relativelysimple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the growth in computing power, and advances in numerical methods for the solution of partial differential equations, modeling technologies based around computational fluid dynamics, finite element analysis and optimisation are now being widely used by researchers and industry. Polymer and adhesive materials are now being widely used in electronic and photonic devices. This paper will illustrate the use of modeling tools to predict the behaviour of these materials from product assembly to its performance and reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Concise Intro to Image Processing using C++ presents state-of-the-art image processing methodology, including current industrial practices for image compression, image de-noising methods based on partial differential equations, and new image compression methods such as fractal image compression and wavelet compression. It includes elementary concepts of image processing and related fundamental tools with coding examples as well as exercises. With a particular emphasis on illustrating fractal and wavelet compression algorithms, the text covers image segmentation, object recognition, and morphology. An accompanying CD-ROM contains code for all algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural landscape boundaries between vegetation communities are dynamically influenced by the selective grazing of herbivores. Here we show how this may be an emergent property of very simple animal decisions, without the need for any sophisticated choice rules etc., using a model based on biased diffusion. Animal grazing intensity is coupled with plant competition, resulting in reaction-diffusion dynamics, from which stable boundaries spontaneously emerge. In the model, animals affect their resources by both consumption and trampling. It is assumed that forage consists of two heterogeneously distributed competing resource species, one that is preferred (grass) over the other (heather) by the animals. The solutions to the resulting system of differential equations for three cases a) optimal foraging, b) random walk foraging and c) taxis-diffusion are presented. Optimal and random foraging gave unrealistic results, but taxis-diffusion accorded well with field observations. Persistent boundaries between patches of near-monoculture vegetation were predicted, with these boundaries drifting in response to overall grazing pressure (grass advancing with increased grazing and vice versa). The reaction-taxis-diffusion model provides the first mathematical explanation for such vegetation mosaic dynamics and the parameters of the model are open to experimental testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the well-posedness for a fourth-order parabolic equation modeling epitaxial thin film growth. Using Kato's Method [1], [2] and [3] we establish existence, uniqueness and regularity of the solution to the model, in suitable spaces, namelyC0([0,T];Lp(Ω)) where  with 1<α<2, n∈N and n≥2. We also show the global existence solution to the nonlinear parabolic equations for small initial data. Our main tools are Lp–Lq-estimates, regularization property of the linear part of e−tΔ2 and successive approximations. Furthermore, we illustrate the qualitative behavior of the approximate solution through some numerical simulations. The approximate solutions exhibit some favorable absorption properties of the model, which highlight the stabilizing effect of our specific formulation of the source term associated with the upward hopping of atoms. Consequently, the solutions describe well some experimentally observed phenomena, which characterize the growth of thin film such as grain coarsening, island formation and thickness growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a newly invented parallel kinematic machine (PKM), Exechon has attracted intensive attention from both academic and industrial fields due to its conceptual high performance. Nevertheless, the dynamic behaviors of Exechon PKM have not been thoroughly investigated because of its structural and kinematic complexities. To identify the dynamic characteristics of Exechon PKM, an elastodynamic model is proposed with the substructure synthesis technique in this paper. The Exechon PKM is divided into a moving platform subsystem, a fixed base subsystem and three limb subsystems according to its structural features. Differential equations of motion for the limb subsystem are derived through finite element (FE) formulations by modeling the complex limb structure as a spatial beam with corresponding geometric cross sections. Meanwhile, revolute, universal, and spherical joints are simplified into virtual lumped springs associated with equivalent stiffnesses and mass at their geometric centers. Differential equations of motion for the moving platform are derived with Newton's second law after treating the platform as a rigid body due to its comparatively high rigidity. After introducing the deformation compatibility conditions between the platform and the limbs, governing differential equations of motion for Exechon PKM are derived. The solution to characteristic equations leads to natural frequencies and corresponding modal shapes of the PKM at any typical configuration. In order to predict the dynamic behaviors in a quick manner, an algorithm is proposed to numerically compute the distributions of natural frequencies throughout the workspace. Simulation results reveal that the lower natural frequencies are strongly position-dependent and distributed axial-symmetrically due to the structure symmetry of the limbs. At the last stage, a parametric analysis is carried out to identify the effects of structural, dimensional, and stiffness parameters on the system's dynamic characteristics with the purpose of providing useful information for optimal design and performance improvement of the Exechon PKM. The elastodynamic modeling methodology and dynamic analysis procedure can be well extended to other overconstrained PKMs with minor modifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Integration Insight provides a brief overview of the most popular modelling techniques used to analyse complex real-world problems, as well as some less popular but highly relevant techniques. The modelling methods are divided into three categories, with each encompassing a number of methods, as follows: 1) Qualitative Aggregate Models (Soft Systems Methodology, Concept Maps and Mind Mapping, Scenario Planning, Causal (Loop) Diagrams), 2) Quantitative Aggregate Models (Function fitting and Regression, Bayesian Nets, System of differential equations / Dynamical systems, System Dynamics, Evolutionary Algorithms) and 3) Individual Oriented Models (Cellular Automata, Microsimulation, Agent Based Models, Discrete Event Simulation, Social Network
Analysis). Each technique is broadly described with example uses, key attributes and reference material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesta tese, consideram-se operadores integrais singulares com a acção extra de um operador de deslocacamento de Carleman e com coeficientes em diferentes classes de funções essencialmente limitadas. Nomeadamente, funções contínuas por troços, funções quase-periódicas e funções possuíndo factorização generalizada. Nos casos dos operadores integrais singulares com deslocamento dado pelo operador de reflexão ou pelo operador de salto no círculo unitário complexo, obtêm-se critérios para a propriedade de Fredholm. Para os coeficientes contínuos, uma fórmula do índice de Fredholm é apresentada. Estes resultados são consequência das relações de equivalência explícitas entre aqueles operadores e alguns operadores adicionais, tais como o operador integral singular, operadores de Toeplitz e operadores de Toeplitz mais Hankel. Além disso, as relações de equivalência permitem-nos obter um critério de invertibilidade e fórmulas para os inversos laterais dos operadores iniciais com coeficientes factorizáveis. Adicionalmente, aplicamos técnicas de análise numérica, tais como métodos de colocação de polinómios, para o estudo da dimensão do núcleo dos dois tipos de operadores integrais singulares com coeficientes contínuos por troços. Esta abordagem permite também a computação do inverso no sentido Moore-Penrose dos operadores principais. Para operadores integrais singulares com operadores de deslocamento do tipo Carleman preservando a orientação e com funções contínuas como coeficientes, são obtidos limites superiores da dimensão do núcleo. Tal é implementado utilizando algumas estimativas e com a ajuda de relações (explícitas) de equivalência entre operadores. Focamos ainda a nossa atenção na resolução e nas soluções de uma classe de equações integrais singulares com deslocamento que não pode ser reduzida a um problema de valor de fronteira binomial. De forma a atingir os objectivos propostos, foram utilizadas projecções complementares e identidades entre operadores. Desta forma, as equações em estudo são associadas a sistemas de equações integrais singulares. Estes sistemas são depois analisados utilizando um problema de valor de fronteira de Riemann. Este procedimento tem como consequência a construção das soluções das equações iniciais a partir das soluções de problemas de valor de fronteira de Riemann. Motivados por uma grande diversidade de aplicações, estendemos a definição de operador integral de Cauchy para espaços de Lebesgue sobre grupos topológicos. Assim, são investigadas as condições de invertibilidade dos operadores integrais neste contexto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This programme of research used a developmental psychopathology approach to investigate females across the adolescent period. A two-sided story is presented; first, a study of neuroendocrine and psychosocial parameters in a group of healthy female adolescents (N = 63), followed by a parallel study of female adolescents with anorexia nervosa (AN) (N = 8). A biopsychosocial, multi-method measurement approach was taken, which utilised self-report, interview and hypothalamic-pituitary-adrenocortical (HPA) axis measures. Saliva samples for the measurement of cortisol and DHEA were collected using the best-recommended methodology: multiple samples over the day, strict reference to time of awakening, and two consecutive sampling weekdays. The research was adolescent-orientated: specifically, by using creative and ageappropriate strategies to ensure participant adherence to protocol, as well as more generally by adopting various procedures to facilitate engagement with the research process. In the healthy females mean (± SD) age 13.9 (± 2.7) years, cortisol and DHEA secretion exhibited typical adult-like diurnal patterns. Developmental markers of chronological age, menarche status and body mass index (BMI) had differential associations with cortisol and DHEA secretory activity. The pattern of the cortisol awakening response (CAR) was sensitive to whether participants had experienced first menses, but not to chronological age or BMI. Those who were post-menarche generally reached their peak point of cortisol secretion at 45 minutes post-awakening, in contrast to the pre-menarche group who were more evenly spread. Subsequent daytime cortisol levels were also higher in post-menarche females, and this effect was also noted for increasing age and BMI. Both morning and evening DHEA were positively associated with developmental markers. None of the situational or self-report psychosocial variables that were measured modulated any of the key findings regarding cortisol and DHEA secretion. The healthy group of girls were within age-appropriate norms for all the self-report measures used, however just under half of this group were insecurely attached (as assessed by interview). Only attachment style was associated with neuroendocrine parameters. In particular, those with an anxious insecure style exhibited a higher awakening sample (levels were 7.16 nmol/l, 10.40 nmol/l and 7.93 nmol/l for secure, anxious and avoidant groups, respectively) and a flatter CAR (mean increases over the awakening period were 6.38 nmol/l, 2.32 nmol/l and 8.61 nmol/l for secure, anxious and avoidant groups, respectively). The afore-mentioned pattern is similar to that consistently associated with psychological disorder in adults, and so this may be a pre-clinical vulnerability factor for subsequent mental health problems. A group of females with AN, mean (± SD) age 15.1 (± 1.6) years, were recruited from a specialist residential clinic and compared to the above group of healthy control (HC) female adolescents. A general picture of cortisol and DHEA hypersecretion was revealed in those with AN. The mean (± SD) change exhibited in cortisol levels over the 30 minute post-awakening period was 7.05 nmol/l (± 5.99) and 8.33 nmol/l (± 6.41) for HC and AN groups, respectively. The mean (± SD) evening cortisol level for the HC girls was 1.95 nmol/l (± 2.11), in comparison to 6.42 nmol/l (± 11.10) for the AN group. Mean (± SD) morning DHEA concentrations were 1.47 nmol/l (± 0.85) and 2.25 nmol/l (± 0.88) for HC and AN groups, respectively. The HC group’s mean (± SD) concentration of 12 hour DHEA was 0.55 nmol/l (± 0.46) and the AN group’s mean level was 0.89 nmol/l (± 0.90). This adrenal steroid hypersecretion evidenced by the AN group was not associated with BMI or eating disorder symptomatology. Insecure attachment characterised by fearfulness and anger was most apparent; a style which was unparalleled in the healthy group of female adolescents. The causal directions of the AN group findings remain unclear. Examining some of the participants with AN as case studies one year post-discharge from the clinic illustrated that for one participant who was recovered, in terms of returning to ordinary school life and no longer exhibiting clinical levels of eating disorder symptomatology, her CARs were no longer inconsistent over sampling days and her DHEA levels were also now generally comparable to the healthy control group. For another participant who had not recovered from her AN one year later, the profile of her CAR continued to be inconsistent over sampling days and her DHEA concentrations over the diurnal period were significantly higher in comparison to the healthy control group. In its entirety, this work’s unique contribution lies in its consideration of methodological and developmental issues specifically pertaining to adolescents. Findings also contribute to knowledge of AN and understanding of vulnerability factors, and how these may be used to develop interventions dedicated to improving adolescent health.