999 resultados para finite Elemente Berechnung
Resumo:
In a recent paper [Phys. Rev. Lett. 88, 163202 (2002)] we established the threshold behavior of the cross section of positron-atom annihilation into two gamma quanta near the positronium (Ps)-formation threshold. Here, the near-threshold behavior of the positron 3 gamma annihilation cross section and its relation to the ortho-Ps-formation cross section are determined. We also analyze the feasibility of observing these effects by examining the effect of the ?nite-energy resolution of a positron beam on the threshold behavior.
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
This paper addresses the theoretical aspects of passive intermodulation (PIM) generation in printed transmission lines. In order to elucidate the mechanisms of PIM generation, a new model of the transmission line length with distributed nonlinearity is proposed. The developed model has been validated by the near-field measurements of PIM product distributions along the microstrip lines. The contributions of nonlinear mixing, power dissipation, and load matching to PIM products have been analyzed in detail. The obtained results reveal the fundamental properties of PIM generation in finite lengths of printed lines with distributed non-linearity and identify possible means for PIM mitigation. It was shown for the first time that the reverse PIM products in a matched transmission line with distributed nonlinearity are generated due to nonlinear scattering. © 2008 IEEE.
Resumo:
This paper examines the finite sample properties of three testing regimes for the null hypothesis of a panel unit root against stationary alternatives in the presence of cross-sectional correlation. The regimes of Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007) are assessed in the presence of multiple factors and also other non-standard situations. The behaviour of some information criteria used to determine the number of factors in a panel is examined and new information criteria with improved properties in small-N panels proposed. An application to the efficient markets hypothesis is also provided. The null hypothesis of a panel random walk is not rejected by any of the tests, supporting the efficient markets hypothesis in the financial services sector of the Australian Stock Exchange.
Resumo:
In this work we present the theoretical framework for the solution of the time-dependent Schrödinger equation (TDSE) of atomic and molecular systems under strong electromagnetic fields with the configuration space of the electron’s coordinates separated over two regions; that is, regions I and II. In region I the solution of the TDSE is obtained by an R-matrix basis set representation of the time-dependent wave function. In region II a grid representation of the wave function is considered and propagation in space and time is obtained through the finite-difference method. With this, a combination of basis set and grid methods is put forward for tackling multiregion time-dependent problems. In both regions, a high-order explicit scheme is employed for the time propagation. While, in a purely hydrogenic system no approximation is involved due to this separation, in multielectron systems the validity and the usefulness of the present method relies on the basic assumption of R-matrix theory, namely, that beyond a certain distance (encompassing region I) a single ejected electron is distinguishable from the other electrons of the multielectron system and evolves there (region II) effectively as a one-electron system. The method is developed in detail for single active electron systems and applied to the exemplar case of the hydrogen atom in an intense laser field.
Resumo:
Theoretical and numerical investigations are carried out for the amplitude modulation of dust-ion acoustic waves (DIAW) propagating in an unmagnetized weakly coupled collisionless fully ionized plasma consisting of isothermal electrons, warm ions and charged dust grains. Modulation oblique (by an angle theta) to the carrier wave propagation direction is considered. The stability analysis, based on a nonlinear Schrodinger-type equation (NLSE), exhibits a sensitivity of the instability region to the modulation angle theta, the dust concentration and the ion temperature. It is found that the ion temperature may strongly modify the wave's stability profile, in qualitative agreement with previous results, obtained for an electron-ion plasma. The effect of the ion temperature on the formation of DIAW envelope excitations (envelope solitons) is also discussed.
Resumo:
A unitary operator V and a rank 2 operator R acting on a Hilbert space H are constructed such that V + R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic.
Resumo:
In this paper, a method for modeling diffusion caused by non-smooth boundary surfaces in simulations of room acoustics using finite difference time domain (FDTD) technique is investigated. The proposed approach adopts the well-known theory of phase grating diffusers to efficiently model sound scattering from rough surfaces. The variation of diffuser well-depths is attained by nesting allpass filters within the reflection filters from which the digital impedance filters used in the boundary implementation are obtained. The presented technique is appropriate for modeling diffusion at high frequencies caused by small surface roughness and generally diffusers that have narrow wells and infinitely thin separators. The diffusion coefficient was measured with numerical experiments for a range of fractional Brownian diffusers.