927 resultados para dye hydrolysis
Resumo:
Drought limits plant growth and threatens crop productivity. A barley (Hordeum vulgare) ethylene imine-induced monogenic recessive mutant cer-zv, which is sensitive to drought, was characterized and genetically mapped in the present study. Detached leaves of cer-zv lost 34.2 % of their initial weight after 1 h of dehydration. The transpiration was much higher in cer-zv leaves than in wild-type leaves under both light and dark conditions. The stomata of cer-zv leaves functioned normally, but the cuticle of cer-zv leaves showed increased permeability to ethanol and toluidine blue dye. There was a 50-90 % reduction in four major cutin monomers, but no reduction in wax loads was found in the cer-zv mutant as compared with the wild type. Two F(2) mapping populations were established by the crosses of 23-19 × cer-zv and cer-zv × OUH602. More polymorphisms were found in EST sequences between cer-zv and OUH602 than between cer-zv and 23-19. cer-zv was located in a pericentromeric region on chromosome 4H in a 10.8 cM interval in the 23-19 × cer-zv map based on 186 gametes tested and a 1.7 cM interval in the cer-zv × OUH602 map based on 176 gametes tested. It co-segregated with EST marker AK251484 in both maps. The results indicated that the cer-zv mutant is defective in cutin, which might be responsible for the increased transpiration rate and drought sensitivity, and that the F(2) of cer-zv × OUH602 might better facilitate high resolution mapping of cer-zv.
Resumo:
In an acidic protein medium Aspergillus fumigatus secretes an aspartic endoprotease (Pep) as well as tripeptidyl-peptidases, a prolyl-peptidase and carboxypeptidases. In addition, LC-MS/MS revealed a novel glutamic protease, AfuGprA, homologous to Aspergillus niger aspergillopepsin II. The importance of AfuGprA in protein digestion was evaluated by deletion of its encoding gene in A. fumigatus wild-type D141 and in a pepΔ mutant. Either A. fumigatus Pep or AfuGprA was shown to be necessary for fungal growth in protein medium at low pH. Exoproteolytic activity is therefore not sufficient for complete protein hydrolysis and fungal growth in a medium containing proteins as the sole nitrogen source. Pep and AfuGprA constitute a pair of endoproteases active at low pH, in analogy to A. fumigatus alkaline protease (Alp) and metalloprotease I (Mep), where at least one of these enzymes is necessary for fungal growth in protein medium at neutral pH. Heterologous expression of AfuGprA in Pichia pastoris showed that the enzyme is synthesized as a preproprotein and that the propeptide is removed through an autoproteolytic reaction at low pH to generate the mature protease. In contrast to A. niger aspergillopepsin II, AfuGprA is a single-chain protein and is structurally more similar to G1 proteases characterized in other non-Aspergillus fungi.
Resumo:
RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.
Resumo:
Um dos grandes desafios do nosso tempo é o aproveitamento da energia solar e outras fontes de energias renováveis para promover um desenvolvimento sustentável em grande escala. Para além da inocuidade face ao meio ambiente, a eficiência e os reduzidos custos de produção das células solares sensibilizadas por corante (DSSC, do inglês dye-sensitized solar cells) continuam a atrair considerável interesse tanto académico como comercial. Em 1991, Grätzel e O’Regan deram um enorme avanço no desenvolvimento das DSSC, utilizando um material de eléctrodo com elevada área superficial, filmes semicondutores nanocristalinos de TiO2 com espessura na ordem dos mícrons Nas células fotovoltaicas o corante sensibilizador (S) adsorvido na camada de TiO2 vai absorver a radiação solar e transfere o electrão fotoexcitado para o semicondutor (SC), formando um par de cargas separadas. O sensibilizador oxidado é regenerado pelo mediador redox existente na solução de electrólito. Uma vez efectuado o trabalho através do circuito externo, o electrão volta para o contra eléctrodo onde reduz o dador de electrão oxidado, completando o ciclo. Desta maneira, a luz é convertida em electricidade sem transformação química permanente
Resumo:
Is surgery for primary hyperparathyroidism easier when methylene blue (MB) is given preoperatively? This retrospective study compares the durations of interventions for primary hyperparathyroidism carried out after i.v. MB administration to those when no MB was given. Over a period of 20 years (June 1976 to December 1996), 175 consecutive patients (56 men and 119 women, with ages ranging from 16 to 92, mean 59.6) were operated upon for primary hyperparathyrodism; 55 were operated before February 1986--the period when BM was introduced routinely, and 120 after. Thirty-two other patients were excluded from the study: 14 had had a previous cervicotomy and 18 another procedure in addition to the parathyroidectomy (usually on the thyroid gland), two conditions which prolonged the time devoted to parathyroid identification and excision. Preoperative calcemia averaged 2.97 mmol/L (2.34 to 4.59) and mean preoperative PTH was equal to 2.6 times the upper normal limit (0.5 to 24.1). Both groups were similar for as age, sex, preoperative calcium and PTH, and histologies. Methylene blue was administered intravenously (5 mg/kg diluted in 500 cc of 5% glucose) over a period of time of one hour starting two hours prior to surgery. All 175 procedures were performed by two surgeons and duration of surgery was recorded from the anesthesiologist's notes. There were 149 adenomas (85%), 24 hyperplasias (14%), a combination of both in two, and unspecified in two others. Except for a case of acute lower back pain synchronous to the injection of the dye (which was immediately stopped), MB was well tolerated. Mean duration for the 55 interventions performed without MB was 68 minutes (35 to 140, median 60), compared to 49 minutes for the 120 procedures carried out after MB had been given (20 to 155, median 45). Differences in operative, times were highly significant (p < 10(-6) and represented a gain of time of 27%. Surgery for primary hyperparathyroidism was significantly shorter when it was preceded by the administration of MB, a dye which facilitates the identification of pathologic parathyroid gland(s).
Resumo:
Breast cancer is the most common cancer among women, 23% (1.3 million) of the total of new cases and the second leading cause of cancer death in women exceeded only by lung cancer. Natural medicines have been proven to be a central source of narrative agents with a pharmaceutical potential. Costunolide is sesquiterpene lactones consisting of diverse plant chemicals that exhibit anti cancer action through cytotoxic effects on various cancer cells. The objectives of present study were to explore the effects of natural compounds on the proliferation of MCF-7 cells and to determine the role of ROS in natural compounds-induced apoptosis in breast cancer cells with a therapeutic potential. Results showed that costunolide screened, possess potent anticancer properties against breast cancer MCF-7 cells, Costunolide was observed as strong anti-proliferative agent with IC50 = 50µM. The anti-proliferative effect of costunolide on MCF cells was confirmed by live/dead assay using fluorescent probes calcein AV/PI. The results demonstrated that treatment of cells with costunolide decreased the viability of MCF-7 cells in a dose-dependent manner. To determine the costunolide-induced apoptosis, flow cytometric analysis was carried out. The results showed that costunolide induced apoptosis in a dose-dependent manner in breast cancer MCF-7cells. ROS are well known mediators of intracellular signaling of cascades. The excessive generation of ROS can induce oxidative stress, loss of cell functioning, and apoptosis. In the present study, we assumed that costunolide might arouse ROS level, which could be involved in induction of apoptosis. Therefore, the intracellular ROS level was measured using the ROS-detecting fluorescence dye 2, 7-dichlorofluorescein diacetate (DCF-DA). Interestingly these effects were significantly abrogated when the cells were pretreated with N-acetyl- cysteine (NAC), a specific ROS inhibitor. Costunolide induces apoptosis through extrinsic pathway in MCF-7 breast cancer cells, In order to examine whether costunolide suppresses cell growth inducing apoptotic cell death, we analyzed DNA contents and apoptosis-related proteins expression level by flow cytometry and western blot, respectively in MCF-7 breast cancer cells we investigated whether costunolide activates extrinsic apoptotic pathway. We examined the expression levels of death receptor signaling-related proteins, caspase-3, and PARP. The results showed that procaspase-3 was cleaved to yield 17 and 20kDa fragments and activation of PARP in treated cells with 25 and 50μM of costunolide. Costunolide induce apoptosis through intrinsic mitochondria pathway in MCF-7 breast cancer Cells. We examined the expression levels of mitochondrial apoptotic pathway related proteins such as anti-apoptotic protein, B-cell lymphoma protein-2 (Bcl2), and pro-apoptotic protein Bax. Costunolide involved in the down regulation of Bcl-2 and up regulation of Bax. These results suggest that costunolide may have beneficial effects for the reduction of breast cancer growth, and new therapeutic strategy for the treatment of human cancers.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
RESUME La méthode de la spectroscopie Raman est une technique d'analyse chimique basée sur l'exploitation du phénomène de diffusion de la lumière (light scattering). Ce phénomène fut observé pour la première fois en 1928 par Raman et Krishnan. Ces observations permirent à Raman d'obtenir le Prix Nobel en physique en 1930. L'application de la spectroscopie Raman a été entreprise pour l'analyse du colorant de fibres textiles en acrylique, en coton et en laine de couleurs bleue, rouge et noire. Nous avons ainsi pu confirmer que la technique est adaptée pour l'analyse in situ de traces de taille microscopique. De plus, elle peut être qualifiée de rapide, non destructive et ne nécessite aucune préparation particulière des échantillons. Cependant, le phénomène de la fluorescence s'est révélé être l'inconvénient le plus important. Lors de l'analyse des fibres, différentes conditions analytiques ont été testées et il est apparu qu'elles dépendaient surtout du laser choisi. Son potentiel pour la détection et l'identification des colorants imprégnés dans les fibres a été confirmé dans cette étude. Une banque de données spectrale comprenant soixante colorants de référence a été réalisée dans le but d'identifier le colorant principal imprégné dans les fibres collectées. De plus, l'analyse de différents blocs de couleur, caractérisés par des échantillons d'origine inconnue demandés à diverses personnes, a permis de diviser ces derniers en plusieurs groupes et d'évaluer la rareté des configurations des spectres Raman obtenus. La capacité de la technique Raman à différencier ces échantillons a été évaluée et comparée à celle des méthodes conventionnelles pour l'analyse des fibres textiles, à savoir la micro spectrophotométrie UV-Vis (MSP) et la chromatographie sur couche mince (CCM). La technique Raman s'est révélée être moins discriminatoire que la MSP pour tous les blocs de couleurs considérés. C'est pourquoi dans le cadre d'une séquence analytique nous recommandons l'utilisation du Raman après celle de la méthode d'analyse de la couleur, à partir d'un nombre de sources lasers le plus élevé possible. Finalement, la possibilité de disposer d'instruments équipés avec plusieurs longueurs d'onde d'excitation, outre leur pouvoir de réduire la fluorescence, permet l'exploitation d'un plus grand nombre d'échantillons. ABSTRACT Raman spectroscopy allows for the measurement of the inelastic scattering of light due to the vibrational modes of a molecule when irradiated by an intense monochromatic source such as a laser. Such a phenomenon was observed for the first time by Raman and Krishnan in 1928. For this observation, Raman was awarded with the Nobel Prize in Physics in 1930. The application of Raman spectroscopy has been undertaken for the dye analysis of textile fibers. Blue, black and red acrylics, cottons and wools were examined. The Raman technique presents advantages such as non-destructive nature, fast analysis time, and the possibility of performing microscopic in situ analyses. However, the problem of fluorescence was often encountered. Several aspects were investigated according to the best analytical conditions for every type/color fiber combination. The potential of the technique for the detection and identification of dyes was confirmed. A spectral database of 60 reference dyes was built to detect the main dyes used for the coloration of fiber samples. Particular attention was placed on the discriminating power of the technique. Based on the results from the Raman analysis for the different blocs of color submitted to analyses, it was possible to obtain different classes of fibers according to the general shape of spectra. The ability of Raman spectroscopy to differentiate samples was compared to the one of the conventional techniques used for the analysis of textile fibers, like UV-Vis Microspectrophotometry (UV-Vis MSP) and thin layer chromatography (TLC). The Raman technique resulted to be less discriminative than MSP for every bloc of color considered in this study. Thus, it is recommended to use Raman spectroscopy after MSP and light microscopy to be considered for an analytical sequence. It was shown that using several laser wavelengths allowed for the reduction of fluorescence and for the exploitation of a higher number of samples.
Resumo:
hShroom1 (hShrm1) is a member of the Apx/Shroom (Shrm) protein family and was identified from a yeast two-hybrid screen as a protein that interacts with the cytoplasmic domain of melanoma cell adhesion molecule (MCAM). The characteristic signature of the Shrm family is the presence of a unique domain, ASD2 (Apx/Shroom domain 2). mRNA analysis suggests that hShrm1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, placenta and lung tissue, as well a variety of melanoma and other cell lines. Co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments indicate that hShrm1 and MCAM interact in vivo and by immunofluorescence microscopy some co-localization of these proteins is observed. hShrm1 partly co-localises with beta-actin and is found in the Triton X-100 insoluble fraction of melanoma cell extracts. We propose that hShrm1 is involved in linking MCAM to the cytoskeleton.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
The urinary steroid profile is constituted by anabolic androgenic steroids, including testosterone and its relatives, that are extensively metabolized into phase II sulfated or glucuronidated steroids. The use of liquid chromatography coupled to mass spectrometry (LC-MS) is an issue for the direct analysis of conjugated steroids, which can be used as urinary markers of exogenous steroid administration in doping analysis, without hydrolysis of the conjugated moiety. In this study, a sensitive and selective ultra high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) method was developed to quantify major urinary metabolites simultaneously after testosterone intake. The sample preparation of the urine (1 mL) was performed by solid-phase extraction on Oasis HLB sorbent using a 96-well plate format. The conjugated steroids were analyzed by UHPLC-QTOF-MS(E) with a single-gradient elution of 36 min (including re-equilibration time) in the negative electrospray ionization mode. MS(E) analysis involved parallel alternating acquisitions of both low- and high-collision energy functions. The method was validated and applied to samples collected from a clinical study performed with a group of healthy human volunteers who had taken testosterone, which were compared with samples from a placebo group. Quantitative results were also compared to GC-MS and LC-MS/MS measurements, and the correlations between data were found appropriate. The acquisition of full mass spectra over the entire mass range with QTOF mass analyzers gives promise of the opportunity to extend the steroid profile to a higher number of conjugated steroids.
Resumo:
Hsp70 is a central molecular chaperone that passively prevents protein aggregation and uses the energy of ATP hydrolysis to solubilize, translocate, and mediate the proper refolding of proteins in the cell. Yet, the molecular mechanism by which the active Hsp70 chaperone functions are achieved remains unclear. Here, we show that the bacterial Hsp70 (DnaK) can actively unfold misfolded structures in aggregated polypeptides, leading to gradual disaggregation. We found that the specific unfolding and disaggregation activities of individual DnaK molecules were optimal for large aggregates but dramatically decreased for small aggregates. The active unfolding of the smallest aggregates, leading to proper global refolding, required the cooperative action of several DnaK molecules per misfolded polypeptide. This finding suggests that the unique ATP-fueled locking/unlocking mechanism of the Hsp70 chaperones can recruit random chaperone motions to locally unfold misfolded structures and gradually disentangle stable aggregates into refoldable proteins.