945 resultados para climate field reconstruction
Resumo:
The epithelium of the corneolimbus contains stem cells for regenerating the corneal epithelium. Diseases and injuries affecting the limbus can lead to a condition known as limbal stem cell deficiency (LSCD), which results in loss of the corneal epithelium, and subsequent chronic inflammation and scarring of the ocular surface. Advances in the treatment of LSCD have been achieved through use of cultured human limbal epithelial (HLE) grafts to restore epithelial stem cells of the ocular surface. These epithelial grafts are usually produced by the ex vivo expansion of HLE cells on human donor amniotic membrane (AM), but this is not without limitations. Although AM is the most widely accepted substratum for HLE transplantation, donor variation, risk of disease transfer, and rising costs have led to the search for alternative biomaterials to improve the surgical outcome of LSCD. Recent studies have demonstrated that Bombyx mori silk fibroin (hereafter referred to as fibroin) membranes support the growth of primary HLE cells, and thus this thesis aims to explore the possibility of using fibroin as a biomaterial for ocular surface reconstruction. Optimistically, the grafted sheets of cultured epithelium would provide a replenishing source of epithelial progenitor cells for maintaining the corneal epithelium, however, the HLE cells lose their progenitor cell characteristics once removed from their niche. More severe ocular surface injuries, which result in stromal scarring, damage the epithelial stem cell niche, which subsequently leads to poor corneal re-epithelialisation post-grafting. An ideal solution to repairing the corneal limbus would therefore be to grow and transplant HLE cells on a biomaterial that also provides a means for replacing underlying stromal cells required to better simulate the normal stem cell niche. The recent discovery of limbal mesenchymal stromal cells (L-MSC) provides a possibility for stromal repair and regeneration, and therefore, this thesis presents the use of fibroin as a possible biomaterial to support a three dimensional tissue engineered corneolimbus with both an HLE and underlying L-MSC layer. Investigation into optimal scaffold design is necessary, including adequate separation of epithelial and stromal layers, as well as direct cell-cell contact. Firstly, the attachment, morphology and phenotype of HLE cells grown on fibroin were directly compared to that observed on donor AM, the current clinical standard substrate for HLE transplantation. The production, transparency, and permeability of fibroin membranes were also evaluated in this part of the study. Results revealed that fibroin membranes could be routinely produced using a custom-made film casting table and were found to be transparent and permeable. Attachment of HLE cells to fibroin after 4 hours in serum-free medium was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. While HLE cultured on AM displayed superior stratification, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (cytokeratin pair 3/12 expression; CK3/12) and displayed a comparable number and distribution of ÄNp63+ progenitor cells to that seen in cultures grown on AM. These results confirm the suitability of membranes constructed from silk fibroin as a possible substrate for HLE cultivation. One of the most important aspects in corneolimbal tissue engineering is to consider the reconstruction of the limbal stem cell niche to help form the natural limbus in situ. MSC with similar properties to bone marrow derived-MSC (BM-MSC) have recently been grown from the limbus of the human cornea. This thesis evaluated methods for culturing L-MSC and limbal keratocytes using various serum-free media. The phenotype of resulting cultures was examined using photography, flow cytometry for CD34 (keratocyte marker), CD45 (bone marrow-derived cell marker), CD73, CD90, CD105 (collectively MSC markers), CD141 (epithelial/vascular endothelial marker), and CD271 (neuronal marker), immunocytochemistry (alpha-smooth muscle actin; á-sma), differentiation assays (osteogenesis, adipogenesis and chrondrogenesis), and co-culture experiments with HLE cells. While all techniques supported to varying degrees establishment of keratocyte and L-MSC cultures, sustained growth and serial propagation was only achieved in serum-supplemented medium or the MesenCult-XF„¥ culture system (Stem Cell Technologies). Cultures established in MesenCult-XF„¥ grew faster than those grown in serum-supplemented medium and retained a more optimal MSC phenotype. L-MSC cultivated in MesenCult-XFR were also positive for CD141, rarely expressed £\-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of L-MSC established in MesenCult-XF„¥ medium. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker £GNp63, along with the corneal differentiation marker CK3/12. Our findings conclude that MesenCult-XFR is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells. Following on from the findings of the previous two parts, silk fibroin was tested as a novel dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. In this section, the growth and phenotype of HLE cells on non-porous versus porous fibroin membranes was compared. Furthermore, the growth of L-MSC in either serum-supplemented medium or the MesenCult-XFR culture system within fibroin fibrous mats was investigated. Lastly, the co-culture of HLE and L-MSC in serum-supplemented medium on and within fibroin dual-layer constructs was also examined. HLE on porous membranes displayed a flattened and squamous monolayer; in contrast, HLE on non-porous fibroin appeared cuboidal and stratified closer in appearance to a normal corneal epithelium. Both constructs maintained CK3/12 expression and distribution of £GNp63+ progenitor cells. Dual-layer fibroin scaffolds consisting of HLE cells and L-MSC maintained a similar phenotype as on the single layers alone. Overall, the present study proposed to create a three dimensional limbal tissue substitute of HLE cells and L-MSC together, ultimately for safe and beneficial transplantation back into the human eye. The results show that HLE and L-MSC can be cultivated separately and together whilst maintaining a clinically feasible phenotype containing a majority of progenitor cells. In addition, L-MSC were able to be cultivated routinely in the MesenCult-XF® culture system while maintaining a high purity for the MSC characteristic phenotype. However, as a serum-free culture medium was not found to sustain growth of both HLE and L-MSC, the combination scaffold was created in serum-supplemented medium, indicating that further refinement of this cultured limbal scaffold is required. This thesis has also demonstrated a potential novel marker for L-MSC, and has generated knowledge which may impact on the understanding of stromal-epithelial interactions. These results support the feasibility of a dual-layer tissue engineered corneolimbus constructed from silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration. Further refinement of this technology should explore the potential benefits of using epithelial-stromal co-cultures with MesenCult-XF® derived L-MSC. Subsequent investigations into the effects of long-term culture on the phenotype and behaviour of the cells in the dual-layer scaffolds are also required. While this project demonstrated the feasibility in vitro for the production of a dual-layer tissue engineered corneolimbus, further studies are required to test the efficacy of the limbal scaffold in vivo. Future in vivo studies are essential to fully understand the integration and degradation of silk fibroin biomaterials in the cornea over time. Subsequent experiments should also investigate the use of both AM and silk fibroin with epithelial and stromal cell co-cultures in an animal model of LSCD. The outcomes of this project have provided a foundation for research into corneolimbal reconstruction using biomaterials and offer a stepping stone for future studies into corneolimbal tissue engineering.
Resumo:
The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.
Resumo:
Topographic structural complexity of a reef is highly correlated to coral growth rates, coral cover and overall levels of biodiversity, and is therefore integral in determining ecological processes. Modeling these processes commonly includes measures of rugosity obtained from a wide range of different survey techniques that often fail to capture rugosity at different spatial scales. Here we show that accurate estimates of rugosity can be obtained from video footage captured using underwater video cameras (i.e., monocular video). To demonstrate the accuracy of our method, we compared the results to in situ measurements of a 2m x 20m area of forereef from Glovers Reef atoll in Belize. Sequential pairs of images were used to compute fine scale bathymetric reconstructions of the reef substrate from which precise measurements of rugosity and reef topographic structural complexity can be derived across multiple spatial scales. To achieve accurate bathymetric reconstructions from uncalibrated monocular video, the position of the camera for each image in the video sequence and the intrinsic parameters (e.g., focal length) must be computed simultaneously. We show that these parameters can be often determined when the data exhibits parallax-type motion, and that rugosity and reef complexity can be accurately computed from existing video sequences taken from any type of underwater camera from any reef habitat or location. This technique provides an infinite array of possibilities for future coral reef research by providing a cost-effective and automated method of determining structural complexity and rugosity in both new and historical video surveys of coral reefs.
Bone tissue engineering : reconstruction of critical sized segmental bone defects in the ovine tibia
Resumo:
Well-established therapies for bone defects are restricted to bone grafts which face significant disadvantages (limited availability, donor site morbidity, insufficient integration). Therefore, the objective was to develop an alternative approach investigating the regenerative potential of medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) and silk-hydroxyapatite (silk-HA) scaffolds. Critical sized ovine tibial defects were created and stabilized. Defects were left untreated, reconstructed with autologous bone grafts (ABG) and mPCL-TCP or silk-HA scaffolds. Animals were observed for 12 weeks. X-ray analysis, torsion testing and quantitative computed tomography (CT) analyses were performed. Radiological analysis confirmed the critical nature of the defects. Full defect bridging occurred in the autograft and partial bridging in the mPCL-TCP group. Only little bone formation was observed with silk-HA scaffolds. Biomechanical testing revealed a higher torsional moment/stiffness (p < 0.05) and CT analysis a significantly higher amount of bone formation for the ABG group when compared to the silk-HA group. No significant difference was determined between the ABG and mPCL-TCP groups. The results of this study suggest that mPCL-TCP scaffolds combined can serve as an alternative to autologous bone grafting in long bone defect regeneration. The combination of mPCL-TCP with osteogenic cells or growth factors represents an attractive means to further enhance bone formation.
Resumo:
Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction.
Resumo:
This paper presents an approach to modelling the resilience of a generic (potable) water supply system. The system is contextualized as a meta-system consisting of three subsystems to represent the natural catchment, the water treatment plant and the water distribution infrastructure for urban use. An abstract mathematical model of the meta-system is disaggregated progressively to form a cascade of equations forming a relational matrix of models. This allows the investigation of commonly implicit relationships between various operational components within the meta system, the in-depth understanding of specific system components and influential factors and the incorporation of explicit disturbances to explore system behaviour. Consequently, this will facilitate long-term decision making to achieve sustainable solutions for issues such as, meeting a growing demand or managing supply-side influences in the meta-system under diverse water availability regimes. This approach is based on the hypothesis that the means to achieve resilient supply of water may be better managed by modelling the effects of changes at specific levels that have a direct or in some cases indirect impact on higher-order outcomes. Additionally, the proposed strategy allows the definition of approaches to combine disparate data sets to synthesise previously missing or incomplete higher-order information, a scientifically robust means to define and carry out meta-analyses using knowledge from diverse yet relatable disciplines relevant to different levels of the system and for enhancing the understanding of dependencies and inter-dependencies of variable factors at various levels across the meta-system. The proposed concept introduces an approach for modelling a complex infrastructure system as a meta system which consists of a combination of bio-ecological, technical and socio-technical subsystems.
Resumo:
Purpose: To investigate the correlations of the global flash multifocal electroretinogram (MOFO mfERG) with common clinical visual assessments – Humphrey perimetry and Stratus circumpapillary retinal nerve fiber layer (RNFL) thickness measurement in type II diabetic patients. Methods: Forty-two diabetic patients participated in the study: ten were free from diabetic retinopathy (DR) while the remainder suffered from mild to moderate non-proliferative diabetic retinopathy (NPDR). Fourteen age-matched controls were recruited for comparison. MOFO mfERG measurements were made under high and low contrast conditions. Humphrey central 30-2 perimetry and Stratus OCT circumpapillary RNFL thickness measurements were also performed. Correlations between local values of implicit time and amplitude of the mfERG components (direct component (DC) and induced component (IC)), and perimetric sensitivity and RNFL thickness were evaluated by mapping the localized responses for the three subject groups. Results: MOFO mfERG was superior to perimetry and RNFL assessments in showing differences between the diabetic groups (with and without DR) and the controls. All the MOFO mfERG amplitudes (except IC amplitude at high contrast) correlated better with perimetry findings (Pearson’s r ranged from 0.23 to 0.36, p<0.01) than did the mfERG implicit time at both high and low contrasts across all subject groups. No consistent correlation was found between the mfERG and RNFL assessments for any group or contrast conditions. The responses of the local MOFO mfERG correlated with local perimetric sensitivity but not with RNFL thickness. Conclusion: Early functional changes in the diabetic retina seem to occur before morphological changes in the RNFL.
Resumo:
The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab μMLC attachment for square field sizes down to 6 mm × 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap. A hypothetical 0.2 mm air gap caused a dose reduction > 2 %, emphasizing the fact that even the tiniest air gaps can cause a large reduction in measured dose. The negligible effect on an 18 mm field size illustrated that the electronic disequilibrium caused by such small air gaps only affects the dosimetry of the very small fields. When performing small field dosimetry, care must be taken to avoid any air gaps, as can be often present when inserting detectors into solid phantoms. It is recommended that very small field dosimetry is performed in liquid water. When using small photon fields, sub-millimetre air gaps can also affect patient dosimetry if they cannot be spatially resolved on a CT scan. However the effect on the patient is debatable as the dose reduction caused by a 1 mm air gap, starting out at 19% in the first 0.1 mm behind the air gap, decreases to < 5 % after just 2 mm, and electronic equilibrium is fully re-established after just 5 mm.
Resumo:
Hardly a month goes by within the scientific literature without some new material “X” being reported as a suitable material on which to grow cell type “Y”, for the potential purpose of treating disease “Z”. Thus when fibroin, a protein found in silk, was first proposed as a biomaterial for cell growth [1] it joined a long list of other materials of both natural as well as synthetic origin. Nevertheless, in the second decade of the Asian Century it is perhaps befitting that a material of so much importance to the continent’s cultural and economic history, should become the focus of cutting-edge biomedical research. Sentiments aside, however, silk fibroin possesses quite a unique combination of properties which make it a promising candidate for repairing the eye and especially for treating damage to the cornea, the transparent window at the front of the eye.
Resumo:
Recent efforts in mission planning for underwater vehicles have utilised predictive models to aid in navigation, optimal path planning and drive opportunistic sampling. Although these models provide information at a unprecedented resolutions and have proven to increase accuracy and effectiveness in multiple campaigns, most are deterministic in nature. Thus, predictions cannot be incorporated into probabilistic planning frameworks, nor do they provide any metric on the variance or confidence of the output variables. In this paper, we provide an initial investigation into determining the confidence of ocean model predictions based on the results of multiple field deployments of two autonomous underwater vehicles. For multiple missions conducted over a two-month period in 2011, we compare actual vehicle executions to simulations of the same missions through the Regional Ocean Modeling System in an ocean region off the coast of southern California. This comparison provides a qualitative analysis of the current velocity predictions for areas within the selected deployment region. Ultimately, we present a spatial heat-map of the correlation between the ocean model predictions and the actual mission executions. Knowing where the model provides unreliable predictions can be incorporated into planners to increase the utility and application of the deterministic estimations.
Resumo:
Purpose The purpose of this study is to explore the safety climate perceptions of the multicultural nursing workforce, and to investigate the influence of diversity of the multicultural nursing workforce on clinical safety in a large tertiary hospital in Saudi Arabia. Background Working in a multicultural environment is challenging. Each culture has its own unique characteristics and dimensions that shape the language, lifestyle, beliefs, values, customs, traditions, and patterns of behaviour, which expatriate nurses must come to terms with. However, cultural diversity in the health care environment can potentially affect the quality of care and patient safety. Method A mixed-method case study (survey, interview and document analysis) was employed. A primary study phase entailed the administration of the Safety Climate Survey (SCS). A population sampling strategy was used and 319 nurses participated, yielding a 76.8% response rate. Descriptive and inferential statistics (Kruskal–Wallis test) were used to analyse survey data. Results The data revealed the nurses’ perceptions of the clinical safety climate in this multicultural environment was unsafe, with a mean score of 3.9 out of 5. No significant difference was found between the age groups, years of nursing experience and their perceptions of the safety climate in this context. A significant difference was observed between the national background categories of nurses and perceptions of safety climate. Conclusion Cultural diversity within the nursing workforce could have a significant influence on perceptions of clinical safety. These findings have the potential to inform policy and practice related to cultural diversity in Saudi Arabia.
Resumo:
Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks.
Resumo:
While the justice implications of climate change are well understood by the international climate regime, solutions to meaningfully address climate injustice are still emerging. This article explores how a number of different theories of justice have influenced the development of international climate regime policies and measures. Such analysis is undertaken by examining the theories of remedial justice, environmental justice, energy justice, social justice and international justice. This article demonstrates how each of these theories has influenced the development of international climate policies or measures. No one theory of justice has the ability to respond to the multifaceted justice implications that arise as a result of climate change. It is argued that a variety of lenses of justice are useful when examining issues of injustice in the climate context. It is believed that articulating the justice implications of climate change by reference to theories of justice assists in clarifying the key issues giving rise to injustice. This article finds that while there has been some progress by the regime in recognising the injustices associated with climate change, such recognition is piecemeal and the implementation of many of the policies and measures discussed within this article needs to be either scaled up, or extended into more far-reaching policies and measures to overcome climate justice concerns. Overall it is suggested that climate justice concerns need to be clearly enunciated within key adaptation instruments so as to provide a legal and legitimate basis upon which to leverage action.