979 resultados para bio-optical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine powders comprising nanocrystallites of barium sodium niobate, Ba2NaNb5O15 (BNN) were obtained via a citrate assisted sol-gel route at a much lower temperature than that of the conventional solid-state reaction route. The phase evolution of BNN as a function of temperature was investigated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). DTA data followed by XRD studies confirmed the BNN formation temperature to be around 923 K. The as-synthesized powders heat-treated at 923 K/10 h attained an orthorhombic structure akin to that of the parent BNN phase. Transmission electron microscopy revealed that the nanocrystallites are associated with dislocations. The optical band gap was calculated using the Kubelka-Munk function. These nanocrystallites exhibited strong visible photoluminescence (PL) at room temperature. The PL mechanism was explained by invoking the dielectric confinement effect, defect states and generation of self-trapped excitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical WDM systems are usually affected by the Four Wave Mixing effects. This paper examines the different frequency allocations in terms of FWM efficiency for CWDM, DWDM and for three various proposed modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a system of hard-core bosons at half-filling in a one-dimensional optical superlattice. The bosons are allowed to hop to nearest-and next-nearest-neighbor sites. We obtain the ground-state phase diagram as a function of microscopic parameters using the finite-size density-matrix renormalization-group method. Depending on the sign of the next-nearest-neighbor hopping and the strength of the superlattice potential the system exhibits three different phases, namely the bond-order (BO) solid, the superlattice induced Mott insulator (SLMI), and the superfluid (SF) phase. When the signs of both hopping amplitudes are the same (the unfrustratedase), the system undergoes a transition from the SF to the SLMI at a nonzero value of the superlattice potential. On the other hand, when the two amplitudes differ in sign (the frustrated case), the SF is unstable to switching on a superlattice potential and also exists only up to a finite value of the next-nearest-neighbor hopping. This part of the phase diagram is dominated by the BO phase which breaks translation symmetry spontaneously even in the absence of the superlattice potential and can thus be characterized by a bond-order parameter. The transition from BO to SLMI appears to be first order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light wave transmission - its compression, amplification, and the optical energy storage in an ultra slow wave medium (USWM) is studied analytically. Our phenomenological treatment is based entirely on the continuity equation for the optical energy flux, and the well-known distribution-product property of Dirac delta-function. The results so obtained provide a clear understanding of some recent experiments on light transmission and its complete stoppage in an USWM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of in-plane motion with high resolution and large bandwidth enables model-identification and real-time control of motion-stages. This paper presents an optical beam deflection based system for measurement of in-plane motion of both macro- and micro-scale motion stages. A curved reflector is integrated with the motion stage to achieve sensitivity to in-plane translational motion along two axes. Under optimal settings, the measurement system is shown to theoretically achieve sub-angstrom measurement resolution over a bandwidth in excess of 1 kHz and negligible cross-sensitivity to linear motion. Subsequently, the proposed technique is experimentally demonstrated by measuring the in-plane motion of a piezo flexure stage and a scanning probe microcantilever. For the former case, reflective spherical balls of different radii are employed to measure the in-plane motion and the measured sensitivities are shown to agree with theoretical values, on average, to within 8.3%. For the latter case, a prototype polydimethylsiloxane micro-reflector is integrated with the microcantilever. The measured in-plane motion of the microcantilever probe is used to identify nonlinearities and the transient dynamics of the piezo-stage upon which the probe is mounted. These are subsequently compensated by means of feedback control. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the energy consumption of IP Over Optical WDM Networks. As the number of Internet users increases the Internet expands in reach and capacity. This results in increased energy consumption of the network. Minimizing the power consumption, termed as ``Greening the Internet'', is desirable to help service providers (SP) operate their networks and provide services more efficiently in terms of power consumption. Minimizing the operational power typically depends on the strategy (e. g., lightpath bypass, lightpath non-bypass and traffic grooming) and operations (e. g., electronic domain versus optical domain). We consider a typical optical backbone network model, and develop a model which minimizes the power consumption. Performance calculation shows that our method consumes less power compared to traffic grooming approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of Pr6O11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of <5 nm nano-crystallites. The surface of these microspheres/nanocrystals is covered/capped with an organic layer of ethylene glycol as shown by TEM analysis and confirmed by IR spectroscopy measurements. The as-prepared product shows blue-green emission under excitation, which changes to orange-red when the product is annealed in air at 600 degrees C for 2 h. This change in luminescence behaviour can be attributed to presence of ethylene glycol layer in the as-prepared product. The samples were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), IR Spectroscopy (IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a strong-coupling (t << U) expansion technique for calculating the density profile for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperature and finite on-site interaction in the presence of superfluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We also show that the superfluid order parameter never vanishes in the trap due to the proximity effect. Our calculations for the scaled density in the vacuum-to-superfluid transition agree well with the experimental data for appropriate temperatures. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3,6-Bis (2 pyridyl) pyridazine has been synthesized and characterized by NMR, XRD and elemental analyses. The vibrational studies were carried out by using FTIR and Raman spectroscopy and the modes of vibrations were analysed and compared with the theoretically calculated values. The nonlinear optical property of the title compound was examined by Kurtz-Perry method and Hyper Raleigh scattering with the fundamental wavelength of 1064nm. This compound possesses less SHG efficiency but large first hyperpolarizability. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anthracene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) (PAE-PAV) of general constitutional unit (PhCCAnthrCCPhCHCHAnthrCHCH)(n) bearing two 2-ethylhexyloxy solubilizing side chains on each phenylene (Ph) unit has been synthesized and characterized. The basic electrochemical characterization was done, showing the existence of two non-reversible oxidation and one reversible reduction peaks. The optical properties, the real and imaginary part of the dielectric function, were probed using spectroscopic ellipsometry (SE). The vibrational structure of the undoped/doped polymer was investigated using Fourier transformed infrared spectroscopy. A strong change in the polaronic absorption was observed during the doping, which after modeling revealed the existence of two separated transitions. The optical changes upon doping were additionally recorded using the SE technique. Similar to the results from FT-IR spectroscopy, two new in-the-gap absorptions were found. Moreover, the electrical conductivity as well as the mobility of positive carriers were measured. In the undoped state, the conductivity of the polymer was found to be below the detection limit (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new breed of microscopy techniques is coming to the forefront of optical imaging. They enhance the attainable 3D resolution of imaging in live and ``fixed'' cells' (with minimal structural perturbation) by greater than tenfold, bringing subcellular structures in sharp focus Along with long-term imaging, deep tissue and high throughput capablities, new insights in various fields of biology are being generated. The main set of these next-generation optical microscopy techniques along with select applications is described in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural dynamics of dendritic spines is one of the key correlative measures of synaptic plasticity for encoding short-term and long-term memory. Optical studies of structural changes in brain tissue using confocal microscopy face difficulties of scattering. This results in low signal-to-noise ratio and thus limiting the imaging depth to few tens of microns. Multiphoton microscopy (MpM) overcomes this limitation by using low-energy photons to cause localized excitation and achieve high resolution in all three dimensions. Multiple low-energy photons with longer wavelengths minimize scattering and allow access to deeper brain regions at several hundred microns. In this article, we provide a basic understanding of the physical phenomena that give MpM an edge over conventional microscopy. Further, we highlight a few of the key studies in the field of learning and memory which would not have been possible without the advent of MpM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sparse recovery methods utilize the l(p)-normbased regularization in the estimation problem with 0 <= p <= 1. These methods have a better utility when the number of independent measurements are limited in nature, which is a typical case for diffuse optical tomographic image reconstruction problem. These sparse recovery methods, along with an approximation to utilize the l(0)-norm, have been deployed for the reconstruction of diffuse optical images. Their performancewas compared systematically using both numerical and gelatin phantom cases to show that these methods hold promise in improving the reconstructed image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.