928 resultados para benzo[a]pyrene toxic equivalence
Resumo:
Tangara da Serra is located on southwestern Mato Grosso and is found to be on the route of pollutants dispersion originated in the Legal Amazon s deforestation area. This region has also a wide area of sugarcane culture, setting this site quite exposed to atmospheric pollutants. The objective of this work was to evaluate the genotoxicity of three different concentrations of organic particulate matter which was collected from August through December / 2008 in Tangara da Serra, using micronucleus test in Tradescantia pallida (Trad-MCN). The levels of particulate matter less than 10μm (MP10) and black carbon (BC) collected on the Teflon and polycarbonate filters were determined as well. Also, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified on the samples from the burning period by gas chromatography detector with flame ionization detection (GC-FID). The results from the analyzing of alkanes indicate an antropic influence. Among the PAHs, the retene was the one found on the higher quantity and it is an indicator of biomass burning. The compounds indene(1,2,3-cd)pyrene and benzo(k)fluoranthene were identified on the samples and are considered to be potentially mutagenic and carcinogenic. By using Trad-MCN, it was observed a significant increase on the micronucleus frequency during the burning period, and this fact can be related to the mutagenic PAHs which were found on such extracts. When the period of less burnings is analyzed and compared to the negative control group, it was noted that there was no significant difference on the micronuclei rate. On the other hand, when the higher burning period is analyzed, statistically significant differences were evident. This study showed that the Trad-MCN was sensible and efficient on evaluating the genotoxicity potencial of organic matter from biomass burning, and also, emphasizes the importance of performing a chemical composition analysis in order to achieve a complete diagnosis on environmental risk control
Resumo:
Silver nanoparticles are widely used for many applications. In this study silver nanoparticles have been tested for their toxic effect on fibroblasts (NIH-3T3), on a human lung adenocarcinoma epithelial cell line (A-549), on PC-12-cells, a rat adrenal pheochromocytoma cell line, and on HEP-G2-cells, a human hepatocellular carcinoma cell line. The viability of the cells cultivated with different concentrations of silver was determined by the MTT assay, a photometric method to determine cell metabolism. Dose-response curves were extrapolated and IC50, total lethal concentration (TLC), and no observable adverse effect concentration (NOAEC) values were calculated for each cell line. As another approach, ECIS (electric-cell-substrate-impedance-sensing) an automated method to monitor cellular behavior in real-time was applied to observe cells cultivated with silver nanoparticles. To identify the type of cell death the membrane integrity was analyzed by measurements of the lactate dehydrogenase releases and by determination of the caspase 3/7 activity. To ensure that the cytotoxic effect of silver nanoparticles is not traced back to the presence of Ag+ ions in the suspension, an Ag+ salt (AgNO3) has been examined at the same concentration of Ag+ present in the silver nanoparticle suspension that is assuming that the Ag particles are completely available as Ag+ ions.
Resumo:
Pure Water, is a crucial demand of creature life. Following industrial development, extra amount of toxic metals such as chromium enters the environmental cycle through the sewage, which is considered as a serious threat for organisms. One of the modern methods of filtration and removal of contaminants in water, is applying Nano-technology. According to specific property of silicate materials, in this article we try to survey increased power in composites and various absorption in several morphologies and also synthesis of Nano-metal silicates with different morphologies as absorbent of metal toxic ions. At first, we synthesize nano zink silicate with three morphologies considering context and the purpose of this survey. 1) Nano synthesis of zink silicate hollow cavity by hydrothermal method in mixed solvent system of ethanol/glycol polyethylene. 2) Zink nano wires silicate in a water-based system by controlling the amount of sodium silicate. 3) Synthesis of nano zink silicate membrane. After synthesizing, we measured the cadmium ion absorbance by synthesized nano zink silicates. Controlling PH, is the applied absorption method. Next step, we synthesized nano zink-magnesium silicate composite in two various morphologies of nanowires and membrane by different precent of zink and magnesium, in order to optimize synthesized nano metal silicate. We used zink nitrate and magnesium nitrate and also measured cadmium absorption by synthesized nano metal silicates in the same way of PH control absorption. In the 3rd step, in order to determine the impact of the type of metal in nano metal silicate, we synthesized nano magnesium silicate and compared its absorption with nano zink silicate. Furthermore, we calculated the optimal concentration in one of synthesizes. Optimal concentration is the process which has the maximum absorption. While applying two methods of absorption in the test, finally we compared the effect of absorption method on the absorption level. Below you find further steps of synthesis: 1) Using IR, RAMAN, XRD spectroscopy to check the accuracy of synthesis. 2) Checking the dispersion of nano particles in ethanol solution by light microscope. 3) Measuring and observing particles with scanning electron microscope (SEM). 4) Using atomic absorption device for measuring the cadmium concentration in water-based solutions. The nano metal silicates were synthesized successfully. All of synthesized nano absorbents have the cadmium ion absorbency. The cadmium absorption via nano absorbents depend on various factors such as kind of metal in nano silicate and percent of metal in nano metal silicate composite. Meanwhile the absorption and PH control of medium containing the absorbent and solution would affect the cadmium absorption.
Resumo:
Toxic metals are part of the most important groups of environmental pollutants that can bind to vital cellular components and interfere with their functions via inhalation, foods, water etc. The serum levels of toxic metals (lead, mercury, cadmium and arsenic) in pregnant women with history of pregnancy complications, pregnant women without history of pregnancy complication and non-pregnant women in Benin City, South – South Nigeria was investigated in this paper, with total of 135 healthy women comprising of 45 pregnant women with history of previous pregnancy complications, 45 pregnant women without history of pregnancy complications and 45 non-pregnant women without history of pregnancy complications (controls). Some demographic characteristics and 4ml of blood samples were obtained from each subject for the analysis of lead, mercury, cadmium and arsenic by standard methods. Pregnant women with history of pregnancy complications recorded a highly significant increase in the toxic metal (lead) mean value of 25.81μg/dl as against 23.70μg/dl for pregnant women without history of pregnancy complications and 11.23μg/dl for non-pregnant (control) women without history of pregnancy complications as well as significant increases in the mean values of other toxic metals (mercury, cadmium and arsenic) compared with controls (p<0.001). The selected toxic metals (Pb, Hg, Cd and As) may be involved in the development of pregnancy complications among pregnant women in Benin City, South– South Nigeria. Lead in particular may pose threat to mothers and fetuses as its mean values in the two groups of pregnant women were well above normal.
Resumo:
The equivalence of the noncommutative U(N) quantum field theories related by the θ-exact Seiberg-Witten maps is, in this paper, proven to all orders in the perturbation theory with respect to the coupling constant. We show that this holds for super Yang-Mills theories with N=0, 1, 2, 4 supersymmetry. A direct check of this equivalence relation is performed by computing the one-loop quantum corrections to the quadratic part of the effective action in the noncommutative U(1) gauge theory with N=0, 1, 2, 4 supersymmetry.
Resumo:
Ground-state diffuse reflectance, time resolved laser-induced luminescence, diffuse reflectance laser flash-photolysis transient absorption and chromatographic techniques were used to elucidate the photodegradation processes of pyrene adsorbed onto microcrystalline cellulose and silica. Ground-state diffuse reflectance showed that on both substrates low concentrations display absorption of pyrene monomers. At high concentrations spectral changes attributed to aggregate formation were observed. Laser induced fluorescence showed that pyrene onto microcrystalline cellulose mainly presents fluorescence from monomers, while for silica, excimer-like emission was observed from low surface loadings (greater than or equal to 0.5 mumol g(-1)). Transient absorption and photodegradation studies were performed at concentrations where mainly monomers exist. On silica, pyrene presents transient absorption from its radical cation. On microcrystalline cellulose both radical cation, radical anion and pyrene triplet-triplet absorption were detected. Irradiation followed by chromatographic analysis showed that pyrene decomposes on both substrates. For pyrene on microcrystalline cellulose 1-hydroxypyrene was the main identified photoproduct since in the absence of oxygen further oxidation of 1-hydroxypyrene was very slow. For pyrene on silica photodegradation was very efficient. Almost no 1-hydroxypyrene was detected since in the presence of oxygen it is quickly oxidized to other photooxidation products. On both substrates, pyrene radical cation is the intermediate leading to photoproducts and oxygen it is not involved in its formation.
Resumo:
1 Nine synthetic amides similar to natural N-piperidine-3-(4,5-methylenedioxyphenyl)-2-(E)-propenainide and N-pyrrolidine-3-(4,5-methylenedyoxiphenyl)2-(E)-propenamide were synthesized and identified by their spectroscopic data.2 the toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leticoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, were determined.3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N-pyrrolidine-3(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N-benzyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.4 the completely inhibition (100%) of the fungal growth was observed with N-piperldine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N,N-diethyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at concentrations of 50 and 100 mu g/mL and N-pirrolidine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.5 the possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
Resumo:
Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.
Resumo:
The so-called toxic triad of factors linked to cancer, namely obesity, poor cardiorespiratory fitness and physical inactivity, increase the risk of cancer and, when cancer is present, worsen its prognosis. Thus, obesity and a sedentary lifestyle have been linked to an elevated cancer risk whereas regular physical exercise and good cardiorespiratory function (CRF) diminish this risk. Despite genetic risk factors, there is evidence to show that some lifestyle modifications are capable of reducing the incidence of cancer and its associated morbidity and mortality. Regular physical exercise targeted at maintaining body weight within healthy limits and improving CRF will reduce a person's cancer risk and, once diagnosed, will also improve its prognosis, reducing mortality and the risk of disease recurrence through similar effects. In this review, we describe how physical activity can be used as a pleiotropic, coadjuvant tool to minimize the toxic triad for cancer and update the mechanisms proposed to date for the effects observed.
Resumo:
BACKGROUND: Drosophila suzukii is a primary insect pest that causes direct damage to fruits with a thin epidermis such as strawberries, cherries and blueberries. In strawberry fields, the co-occurrence of D. suzukii and Zaprionus indianus has increased production losses. This study evaluated the toxicities and effects of insecticidal baits to control adults and larvae of both D. suzukii and Z. indianus . RESULTS: Organophosphate (dimethoate and malathion), spinosyn (spinosad and spinetoram), pyrethroid (lambda-cyhalothrin) and diamide (cyantraniliprole) insecticides exhibited high toxicity to both adults and larvae of D. suzukii and Z. indianus (mortality > 80%) in topical and dip bioassays. However, when the insecticides were mixed with a feeding attractant, a positive effect was observed only for adults of D. suzukii . Insecticides containing neonicotinoids (acetamiprid and thiamethoxam) and pyrolle (chlorfenapyr) caused intermediate mortality to adults of D. suzukii (40?60%) and low mortality for Z. indianus (mortality < 23%); however, these compounds reduced the larval infestation of the two species by 55?86%. Botanical (azadirachtin) and sulphur insecticides exhibited low toxicity (mortality < 40%) on adults and larvae of both species. CONCLUSION: Dimethoate, malathion, spinosad, spinetoram, lambda-cyhalothrin and cyantraniliprole are highly toxic to both larvaeandadultsof D. suzukii and Z.indianus .Theuseoftoxicbaitsforadultsof D. suzukii couldbeanalternativeinmanagement of this species. © 2016 Society of Chemical Industry Keywords: spotted-wing drosophila; fig fly; chemical control; strawberry; toxic bait; pest control.
Resumo:
2016
Resumo:
BACKGROUND: Drosophila suzukii is a primary insect pest that causes direct damage to fruits with a thin epidermis such as strawberries, cherries and blueberries. In strawberry fields, the co-occurrence of D. suzukii and Zaprionus indianus has increased production losses. This study evaluated the toxicities and effects of insecticidal baits to control adults and larvae of both D. suzukii and Z. indianus . RESULTS: Organophosphate (dimethoate and malathion), spinosyn (spinosad and spinetoram), pyrethroid (lambda-cyhalothrin) and diamide (cyantraniliprole) insecticides exhibited high toxicity to both adults and larvae of D. suzukii and Z. indianus (mortality > 80%) in topical and dip bioassays. However, when the insecticides were mixed with a feeding attractant, a positive effect was observed only for adults of D. suzukii . Insecticides containing neonicotinoids (acetamiprid and thiamethoxam) and pyrolle (chlorfenapyr) caused intermediate mortality to adults of D. suzukii (40?60%) and low mortality for Z. indianus (mortality < 23%); however, these compounds reduced the larval infestation of the two species by 55?86%. Botanical (azadirachtin) and sulphur insecticides exhibited low toxicity (mortality < 40%) on adults and larvae of both species. CONCLUSION: Dimethoate, malathion, spinosad, spinetoram, lambda-cyhalothrin and cyantraniliprole are highly toxic to both larvaeandadultsof D. suzukii and Z.indianus .Theuseoftoxicbaitsforadultsof D. suzukii couldbeanalternativeinmanagement of this species. © 2016 Society of Chemical Industry Keywords: spotted-wing drosophila; fig fly; chemical control; strawberry; toxic bait; pest control.