Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines


Autoria(s): Sambale, F.; Wagner, S.; Stahl, F.; Khaydarov, R. R.; Scheper, T.; Bahnemann, Detlef W.
Data(s)

2015

Resumo

Silver nanoparticles are widely used for many applications. In this study silver nanoparticles have been tested for their toxic effect on fibroblasts (NIH-3T3), on a human lung adenocarcinoma epithelial cell line (A-549), on PC-12-cells, a rat adrenal pheochromocytoma cell line, and on HEP-G2-cells, a human hepatocellular carcinoma cell line. The viability of the cells cultivated with different concentrations of silver was determined by the MTT assay, a photometric method to determine cell metabolism. Dose-response curves were extrapolated and IC50, total lethal concentration (TLC), and no observable adverse effect concentration (NOAEC) values were calculated for each cell line. As another approach, ECIS (electric-cell-substrate-impedance-sensing) an automated method to monitor cellular behavior in real-time was applied to observe cells cultivated with silver nanoparticles. To identify the type of cell death the membrane integrity was analyzed by measurements of the lactate dehydrogenase releases and by determination of the caspase 3/7 activity. To ensure that the cytotoxic effect of silver nanoparticles is not traced back to the presence of Ag+ ions in the suspension, an Ag+ salt (AgNO3) has been examined at the same concentration of Ag+ present in the silver nanoparticle suspension that is assuming that the Ag particles are completely available as Ag+ ions.

Identificador

http://dx.doi.org/10.15488/533

http://www.repo.uni-hannover.de/handle/123456789/557

Idioma(s)

eng

Publicador

New York : Hindawi Publishing Corporation

Relação

http://dx.doi.org/10.1155/2015/136765

ISSN:1687-4110

ESSN:1687-4129

Direitos

CC-BY 3.0

https://creativecommons.org/licenses/by/3.0/

frei zugänglich

Fonte

Journal of Nanomaterials 2015 (2015)

Palavras-Chave #in-vitro cytotoxicity #textile fabrics #antibacterial #nanosilver #colloids #growth #ions #ddc:500 #ddc:540
Tipo

status-type:publishedVersion

doc-type:article

doc-type:Text