950 resultados para auricular implant
Resumo:
Somatic cell nuclei of giant pandas can dedifferentiate in enucleated rabbit ooplasm, and the reconstructed eggs can develop to blastocysts. In order to observe whether these interspecies cloned embryos can implant in the uterus of an animal other than th
Resumo:
Rapid thermal annealing of arsenic and boron difluoride implants, such as those used for source/drain regions in CMOS, has been carried out using a scanning electron beam annealer, as part of a study of transient diffusion effects. Three types of e-beam anneal have been performed, with peak temperatures in the range 900 -1200 degree C; the normal isothermal e-beam anneals, together with sub-second fast anneals and 'dual-pulse' anneals, in which the sample undergoes an isothermal pre-anneal followed by rapid heating to the required anneal temperature is less than 0. 5s. The diffusion occuring during these anneal cycles has been modelled using SPS-1D, an implant and diffusion modelling program developed by one of the authors. This has been modified to incorporate simulated temperature vs. time cycles for the anneals. Results are presented applying the usual equilibrium clustering model, a transient point-defect enhancement to the diffusivity proposed recently by Fair and a new dynamic clustering model for arsenic. Good agreement with SIMS measurements is obtained using the dynamic clustering model, without recourse to a transient defect model.
Resumo:
Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 microm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a 'beam overlap' technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 microm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.
Resumo:
Beneficial effects on bone-implant bonding may accrue from ferromagnetic fiber networks on implants which can deform in vivo inducing controlled levels of mechanical strain directly in growing bone. This approach requires ferromagnetic fibers that can be implanted in vivo without stimulating undue inflammatory cell responses or cytotoxicity. This study examines the short-term in vitro responses, including attachment, viability, and inflammatory stimulation, of human peripheral blood monocytes to 444 ferritic stainless steel fiber networks. Two types of 444 networks, differing in fiber cross section and thus surface area, were considered alongside austenitic stainless steel fiber networks, made of 316L, a widely established implant material. Similar high percent seeding efficiencies were measured by CyQuant® on all fiber networks after 48 h of cell culture. Extensive cell attachment was confirmed by fluorescence and scanning electron microscopy, which showed round monocytes attached at various depths into the fiber networks. Medium concentrations of lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-α) were determined as indicators of viability and inflammatory responses, respectively. Percent LDH concentrations were similar for both 444 fiber networks at all time points, whereas significantly lower than those of 316L control networks at 24 h. All networks elicited low-level secretions of TNF-α, which were significantly lower than that of the positive control wells containing zymosan. Collectively, the results indicate that 444 networks produce comparable responses to medical implant grade 316L networks and are able to support human peripheral blood monocytes in short-term in vitro cultures without inducing significant inflammatory or cytotoxic effects.
Resumo:
The use of a porous coating on prosthetic components to encourage bone ingrowth is an important way of improving uncemented implant fixation. Enhanced fixation may be achieved by the use of porous magneto-active layers on the surface of prosthetic implants, which would deform elastically on application of a magnetic field, generating internal stresses within the in-growing bone. This approach requires a ferromagnetic material able to support osteoblast attachment, proliferation, differentiation, and mineralization. In this study, the human osteoblast responses to ferromagnetic 444 stainless steel networks were considered alongside those to nonmagnetic 316L (medical grade) stainless steel networks. While both networks had similar porosities, 444 networks were made from coarser fibers, resulting in larger inter-fiber spaces. The networks were analyzed for cell morphology, distribution, proliferation, and differentiation, extracellular matrix production and the formation of mineralized nodules. Cell culture was performed in both the presence of osteogenic supplements, to encourage cell differentiation, and in their absence. It was found that fiber size affected osteoblast morphology, cytoskeleton organization and proliferation at the early stages of culture. The larger inter-fiber spaces in the 444 networks resulted in better spatial distribution of the extracellular matrix. The addition of osteogenic supplements enhanced cell differentiation and reduced cell proliferation thereby preventing the differences in proliferation observed in the absence of osteogenic supplements. The results demonstrated that 444 networks elicited favorable responses from human osteoblasts, and thus show potential for use as magnetically active porous coatings for advanced bone implant applications. © 2012 Wiley Periodicals, Inc.
Resumo:
The aim of this work is to improve bone-implant bonding. This can, potentially, be achieved through the use of an implant coating composed of fibre networks. It is hypothesised that such an implant can achieve strong peri-prosthetic bone anchorage, when seeded with human mesenchymal stem cells (hMSCs). The materials employed were 444 and 316L stainless steel fibre networks of the same fibre volume fraction. The present work confirms that hMSCs are able to proliferate and differentiate towards the osteogenic lineage when seeded onto the fibre networks. Cellular viability, proliferation and metabolic activity were assessed and the results suggest higher proliferation rates when hMSC are seeded onto the 444 networks as compared to 316L. Cell distribution was found uniform across the seeded surfaces with 444 showing a somewhat higher infiltration depth. Copyright © Materials Research Society 2013.
Resumo:
In this work, we investigate the effects of the indium ion implantation towards the back-channel interface on the total dose hardness of the n-channel SOI MOSFET. The results show that the indium implant has slight impact on the normal threshold voltage while preserving low leakage current after irradiation. The advantage is attributed to the narrow as-implanted and postanneal profile of the indium implantation. Two-dimensional simulations have been used to understand the physical mechanisms of the effects.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
A subretinal implant device, Micro Photo Diode Array, which can partly imitate the function of photoreceptor cells, was presented. Process to fabricate the MPDA and characteristics of the MPDA in vivo were described.
Resumo:
The present study reports a subretinal implant device which can imitate the function of photoreceptor cells. Photodiode (PD) arrays on the chip translate the incident light into current according to the intensity of light. With an electrode at the end of every photodiode, the PDs transfer the current to the remnant healthy visual cells such as bipolar cells and horizontal cells and then activate these cells. Biocompatible character of the materials and artificial photoreceptor itself were tested and the photoelectric characteristics of the chips in simulative condition were described and discussed.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
In the present work p-type Si specimens were implanted with Cl ions of 100 keV to successively increasing fluences of 1 x 10(15), 5 x 10(15), 1 x 10(16) and 5 x 10(16) ions cm(-2) and subsequently annealed at 1073 K for 30 min. The microstructure was investigated with the transmission electron microscopy (TEM) in both the plane-view and the cross-sectional view. The implanted layer was amorphized after chlorine implantation even at the lowest ion fluence, while re-crystallization of the implanted layer occurs on subsequent annealing at 1073 K. In the annealed specimens implanted above the lowest fluence three layers along depth with different microstructures were found, which include a shallow polycrystalline porous layer, a deeper single-crystalline layer containing high density of gas bubbles, a well separated deeper layer composed of dislocation loops in low density. With increasing ion fluence the thickness of the porous polycrystalline layer increases. It is indicated that chlorine can suppress the epitaxial re-crystallization of implanted silicon, when the implant fluence of Cl ions exceeds a certain level.
Resumo:
种质问题是养殖健康发展的基础。在鱼类养殖中,卵子和精子的质量直接关系到受精、胚胎发育,仔稚鱼发育以及幼鱼生长等一系列过程。本论文针对大西洋庸鲽和大西洋鲑的配子质量进行研究。研究内容涉及大西洋庸鲽精子冷冻保存方法;促性腺激素释放激素类似物(GnRHa)使用对其精子冷冻保存效果、以及脂肪酸组成的影响;野生和驯养大西洋鲑卵子在脂肪酸、类胡萝卜素、矿物盐方面的差异比较。 精子冷冻保存通过提高对精子的利用效率,进而对于种质改良,推进鱼类养殖科研和生产具有重要意义。本实验建立了大西洋庸鲽精子大容量冷冻保存方法。八种抗冻剂冷冻保存实验结果表明:10% 及15% DMSO配以 HBSS 或KS 的抗冻剂组合冷冻保存效果最佳,4 mL体积冷冻保存可获得与1.6 mL同样的保存效果。 在繁殖季节后期注射GnRHa激素缓释剂,可获得质量稳定的大西洋庸鲽精液,将激素注射方法与精子冷冻保存方法相结合对于提高雄鱼利用率,扩大生产规模具有重要实用价值。本项研究分三个时间采集注射GnRHa激素后的雄鱼精子以及同期未注射激素的雄鱼精子,对所有精子样品使用同样的方法进行冷冻保存,检测冷冻保存后解冻精子的受精率与活力。结果表明,激素注射与否对于冷冻保存后精子的受精率和活力无显著影响,两类冷冻精液均达到鲜精水平。实验结果还表明,注射激素14天后的精子的密度显著的降低。说明GnRHa激素的使用可以显著降低精子密度,但不会影响精子的冷冻保存效果。 本相研究同时对注射GnRHa 缓释激素和未注射GnRHa 缓释激素的大西洋庸鲽精液脂肪酸成分进行分析,以检测该激素使用对精子生化组分的影响。结果表明激素的使用对在DHA (22:6n-3,二十二碳六烯酸)、EPA(20:5n-3,二十碳五烯酸)、AA(20:4n-6,花生四烯酸)等重要脂肪酸,不饱和脂肪酸、饱和脂肪酸以及n-3、n-6等重要种类的脂肪酸总量及其比例没有显著影响。精液脂肪酸中DHA含量最高,约占25%;PUFA约为44%。 作为世界性的重要养殖品种,野生和驯养大西洋鲑在形态、生化组成以及遗传 等方面表现出的差异被广泛关注。本论文,对野生和驯养大西洋鲑受精卵关键生化成分进行分析,通过与野生受精卵比较阐明驯养受精卵的质量状况,为亲鱼营养需求提供指导依据。本实验中野生配子和驯养配子的受精率没有显著差异,但重要脂肪酸组成、类胡萝卜素以及矿物盐含量都存在多方面显著差异。两类受精卵脂肪酸中含量最高的依次为18:1n-9(油酸)、DHA(二十二碳六烯酸)、16:0(棕榈酸)、EPA(二十碳五烯酸)。野生受精卵的单不饱和脂肪酸总量显著高于驯养受精卵,而多不饱和脂肪酸(PUFA)比例显著低于驯养的受精卵。在主要必需不饱和脂肪酸(EFA)中,DHA和EPA在野生受精卵中的比例高于驯养受精卵,AA(花生四烯酸)低于驯养受精卵。野生受精卵虾青素(Ax)的含量低于驯养受精卵而鸡油菌素(Cx)含量高于驯养受精卵。野生受精卵中多种矿物盐的含量(铝、铜、铁、硒和锌)含量显著高于驯养的受精卵。差别最大的为铜。诸多方面的差异表明,野生亲鱼与驯养亲鱼产出的卵子确实存在显著差异,因此关注亲鱼的营养极为重要。
Resumo:
An Approach to the Rehabilitation of Prelingually Deaf Children After Cochlear Implantation Zheng Xiujin(Medical Psychology) Directed by Professor Yin WenGang Abstract Objective: To sum up the acquirement rule of speech and language capability which is for the prelingually deaf children after cochlear implantation by listening and language rehabilitation training and to investigate the factors that affect rehabilitation speed. Method: Sixty-four children received a cochlear implant at the age of 2 to 5 years from 2001 to 2005. They begin to be trained under group pattern after switch on 1 month. The whole training program lasted more than 7 months; after that, according to the teacher’s plan the training program was to be continued at home. Result: The period is 108±7.7 days that they can pronounce correctly 50 percent of all of simple-finals and compound-finals, the period is 115.0±7.8 days that they begin auditory repeating, the period is 135.3±10.9 days that they can speech the first specific word independently and the period is 200.3±13.9 days that they can speak 70 words and come into tri-gamut-word and two-word sentence period. The patient that is the group at the age of 2-3 years can take part in normal kindergarten after switch on about 10 months. There are no significant differences in various grades of speech-language development with different age groups and so do with different sex groups. There are significant differences in various grade of speech-language development with various IQ group (P<0.01) and so do with using and not using hearing aids before implantation. Conclusion: From the research we find that the speech and language development sequence is the same level between the prelingually deaf children of 2 to 5 years who received cochlear implant after speech training and normal children and which are stages of uncomplicated sound production, continuous syllabic (babbling), speech sprout, single-word utterances and two-word utterances in proper order. The time is short significantly and the reason is that cognition capability is enhanced along with the increase of age. The intelligence is main factor that affect rehabilitation speed and the speed in the group of high IQ is faster than common IQ. It is not because of the dominance cognition of the senior group that makes the increasing of the rehabilitation, it even makes slowly. The reason of which is that the senior group are exposed the language environment too late to achieve speech and language development. So we should perform an operation and training early. The effectiveness of rehabilitation after cochlear implantation is improved by using hearing aids before implantation. The reason is auditory stimulate can be benefit of to deaf children. The rehabilitation speeds in the children at the age of 2 to 5 years have nothing to do with sex. Key words: cochlear implant; speech therapy; paediatric rehabilitation