966 resultados para Zernike Moments
Resumo:
The magnetic properties of two compositions of random solutions in the TlCu2-xFexSe2 system with x = 0.2 and 0.45 have been investigated by superconducting quantum interference device magnetometry. The crystal structure is of a layer type and ordering due to the iron atoms occurs at low temperatures, with T-c = 85 K for x = 0.2 and T-c = 130 K for x = 0.45. The samples were highly textured crystals and the magnetic moments of both compositions were found to align along the c axis of the structure. The saturation moments were found to be 1.5 mu(B)/Fe x = 0.2 and 0.66 mu(B)/Fe for x = 0.45. (c) 2005 American Institute of Physics.
Resumo:
A new compound, IrMnSi, has been synthesized, and its crystal structure and magnetic properties have been investigated by means of neutron powder diffraction, magnetization measurements, and first-principles theory. The crystal structure is found to be of the TiNiSi type (ordered Co2P, space group Pnma). The Mn-projected electronic states are situated at the Fermi level, giving rise to metallic binding, whereas a certain degree of covalent character is observed for the chemical bond between the It and Si atoms. A cycloidal, i.e., noncollinear, magnetic structure was observed below 460 K, with the propagation vector q=[0,0,0.4530(5)] at 10 K. The magnetism is dominated by large moments on the Mn sites, 3.8 mu(B)/atom from neutron diffraction. First-principles theory reproduces the propagation vector of the experimental magnetic structure as well as the angles between the Mn moments. The calculations further result in a magnetic moment of 3.21 mu(B) for the Mn atoms, whereas the Ir and Si moments are negligible, in agreement with observations. A calculation that more directly incorporates electron-electron interactions improves the agreement between the theoretical and experimental magnetic moments. A band mechanism is suggested to explain the observed magnetic order.
Resumo:
A new ternary Ir-Mn-Si phase with stoichiometry Mn3IrSi has been synthesized and found to crystallize in the cubic AlAu4-type structure, space group P213 with Z=4, which is an ordered form of the beta-Mn structure. The unit cell dimension was determined by x-ray powder diffraction to a=6.4973(3) Angstrom. In addition to the crystal structure, we have determined the magnetic structure and properties using superconducting quantum interference device magnetometry and Rietveld refinements of neutron powder diffraction data. A complex noncollinear magnetic structure is found, with magnetic moments of 2.97(4)u(B) at 10 K only on the Mn atoms. The crystal structure consists of a triangular network built up by Mn atoms, on which the moments are rotated 120degrees around the triangle axes. The magnetic unit cell is the same as the crystallographic and carries no net magnetic moment. The Neel temperature was determined to be 210 K. A first-principles study, based on density functional theory in a general noncollinear formulation, reproduces the experimental results with good agreement. The observed magnetic structure is argued to be the result of frustration of antiferromagnetic couplings by the triangular geometry.
Resumo:
The phase instability of bismuth perovskite (BiMO3), where M is a ferromagnetic cation, is exploited to create self-assembled magnetic oxide nanocrystal arrays on oxide supports. Conditions during pulsed laser deposition are tuned so as to induce complete breakdown of the perovskite precursor into bismuth oxide (Bi2 O3 ) and metal oxide (M-Ox ) pockets. Subsequent cooling in vacuum volatizes the Bi2 O3 leaving behind an array of monodisperse nanocrystals. In situ reflective high energy electron diffraction beam is exploited to monitor the synthesis in real-time. Analysis of the patterns confi rms the phase separation and volatization process. Successful synthesis of M-Ox, where M = Mn, Fe, Co, and Cr, is shown using this template-free facile approach. Detailed magnetic characterization of nanocrystals is carried out to reveal the functionalities such as magnetic anisotropy as well as larger than bulk moments, as expected in these oxide nanostructures.
Resumo:
This article argues that the terrorist bombings of hotels, pubs and nightclubs in Bali in October 2002, and in Mombasa one month later, were inaugural moments in the post-9/11 securitization of the tourism industry. Although practices of tourism and terrorism seem antithetical – one devoted to travel and leisure, the other to political violence – this article argues that their entanglement is revealed most clearly in the counter-terrorism responses that brought the everyday lives of tourists and tourism workers, as well as the material infrastructure of the tourism industry, within the orbit of a global security apparatus waging a ‘war on terror’. Drawing on critical work in international relations and geography, this article understands the securitization of tourism as part of a much wider logic in which the liberal order enacts pernicious modes of governance by producing a terrorist threat that is exceptional. It explores how this logic is reproduced through a cosmopolitan community symbolized by global travellers, and examines the measures taken by the tourism industry to secure this community (e.g. the physical transformations of hotel infrastructure and the provision of counter-terrorism training).
Resumo:
Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome lattice ‘ice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References
[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.
Resumo:
This paper investigates the distribution of the condition number of complex Wishart matrices. Two closely related measures are considered: the standard condition number (SCN) and the Demmel condition number (DCN), both of which have important applications in the context of multiple-input multipleoutput (MIMO) communication systems, as well as in various branches of mathematics. We first present a novel generic framework for the SCN distribution which accounts for both central and non-central Wishart matrices of arbitrary dimension. This result is a simple unified expression which involves only a single scalar integral, and therefore allows for fast and efficient computation. For the case of dual Wishart matrices, we derive new exact polynomial expressions for both the SCN and DCN distributions. We also formulate a new closed-form expression for the tail SCN distribution which applies for correlated central Wishart matrices of arbitrary dimension and demonstrates an interesting connection to the maximum eigenvalue moments of Wishart matrices of smaller dimension. Based on our analytical results, we gain valuable insights into the statistical behavior of the channel conditioning for various MIMO fading scenarios, such as uncorrelated/semi-correlated Rayleigh fading and Ricean fading. © 2010 IEEE.
Resumo:
In this interview, Teya Sepinuck, the Artistic Director of Theatre of Witness reflects not only on her first two projects in Northern Ireland, but also vividly illustrates her way of working by evoking seminal moments in her previous practice. Although, she has resisted attempts to systematise the Theatre of Witness process, preferring to see it as a set of principles rather than a fixed methodology, these principles have given rise to clear guidelines that have come to govern the process through which she works. As the interview illustrates, Sepinuck, a Jewish Buddhist, has no hesitation in explaining her approach within the framework of a humanist ‘spirituality’ that explicitly deploys Judeo-Christian terminology. She invites discussion of each participant's ‘prayer-life’ and positions herself primarily as a listener rather than an interlocutor. The introduction to the interview contextualises Sepinuck's practice in relation to her previous work and other drama-based interventions in Northern Ireland. Concerns that the lack of critical distance between the tellers and their stories inhibits those who see it from freely engaging with it as they might with a fictionalised account, are also critiqued. In the interview, Sepinuck directly addresses the risk of the commodification of her work, explaining the safeguards in place to protect the participants, who have repeatedly asserted how beneficial they have found their involvement in the work to be. The sense of autonomy and empowerment that emerges from these responses represent a persuasive challenge to concerns that they are passive instruments of the Theatre of Witness process.
Resumo:
The hundredth anniversary of the outbreak of the First World War is only the first of a large number of major European historical anniversaries that will occur in the coming four years. Other twentieth-century anniversaries include that of the Russian Revolution and the Easter Uprising; notable corollaries from earlier centuries include the Battle of Bannockburn, the Hanoverian succession, the Battle of Waterloo and, perhaps most significant of all, the five hundredth anniversary of the Lutheran Reformation. Rather than commission special issues or other features to tie in to individual anniversaries centred on or relevant to German history in a manner which repeats unthinkingly the conventions of scholarly and popular culture, the editors elected to reflect more fundamentally on what might be at stake in major anniversaries for professional scholars of history. In anticipation of the major wave of scholarly and popular publications, commemorative activities and memory conflicts that each of these will generate, and in order to reflect upon the dynamics of German history, memory and commemoration in a more overtly comparative context, the editors invited a number of scholars working on different national histories to reflect on the possibilities and potential pitfalls such anniversaries offer to historians who tie their work in to such moments. They are Jörg Arnold (Nottingham), Thomas A. Brady (Berkeley), Fearghal McGarry (Queen’s University, Belfast), Tim Grady (Chester) and Dan Healey (St Antony’s College, Oxford). The questions were posed by the editors.
Resumo:
We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.
Resumo:
Depth-sensitive magnetic, structural and chemical characterization is important in the understanding and optimization of novel physical phenomena emerging at interfaces of transition metal oxide heterostructures. In a simultaneous approach we have used polarized neutron and resonant X-ray reflectometry to determine the magnetic profile across atomically sharp interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers with sub-nanometer resolution. In particular, the X-ray resonant magnetic reflectivity measurements at the Fe and Mn resonance edges allowed us to determine the element specific depth profile of the ferromagnetic moments in both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in contrast to previous observations on inversely deposited layers. Additional resonant X-ray reflection measurements indicate a region of an altered Mn- and O-content at the interface, with a thickness matching that of the magnetic diluted layer, as origin of the reduction of the magnetic moment.
Resumo:
TAP pulse responses are normally analysed using moments, which are integrals of the full TAP pulse response. However, in some cases the entire pulse response may not be recorded due to technical reasons, thereby compromising any data analysis due to moments generated from incomplete pulse responses. The current work discloses the development of a function which mathematically expands the tail of a TAP pulse response, so that the TAP data analysis can be accurately conducted. This newly developed analysis method has been applied to the oxidative dehydrogenation of ethane over Co–Cr–Sn–WOx/α-Al2O3 and Co–Cr–Sn–WOx/α-Al2O3 catalysts as a case study.
Resumo:
The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.
Resumo:
Using device-to-device communications as an underlay for cellular communications will provide an exciting opportunity to increase network capacity as well as improving spectral efficiency. The unique geometry of device-to-device links, where user equipment is often held or carried at low elevation and in close proximity to the human body, will mean that they are particularly susceptible to shadowing events caused not only by the local environment but also by the user's body. In this paper, the shadowed κ - μ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels. In this model, the statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, a dominant signal component with arbitrary power may exist. The resultant dominant signal component, which is formed by the phasor addition of these leading contributions, is assumed to follow a Nakagami- m distribution. The probability density function, moments, and the moment-generating function are also derived. The new model is then applied to device-to-device links operating at 868 MHz in an outdoor urban environment. It was found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. Overall, the shadowed κ - μ fading model is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.
Resumo:
In an effort to achieve large high-field magnetization and increased Curie temperature, polycrystalline DyRh, (DyRh)95X5 and (DyRh)85X15 (X = Fe, Co, Ni, Gd) thin films have been prepared via ultra-high vacuum DC co-sputtering on SiO2 and Si wafers, using Ta as seed and cap material. A body-centred cubic CsCl-like crystal formation (B2 phase) was achieved for DyRh around the equiatomic equilibrium, known from single crystals. The maximum in-plane spontaneous magnetization at T = 4K in fields of μ0H = 5T of was found to be μ0MS,4K = (1.50 ± 0.09)T with a ferromagnetic transition at TC = (5 ± 1)K and a coercivity of μ0HC,4K[D] = (0.010 ± 0.001)T (at T = 4K) for layers deposited on substrates heated to 350°C. Samples prepared at room temperature exhibited poorer texture, smaller grains and less B2-phase content; this did impact on the Curie temperature which was higher compared to those layers with best crystallisation; however the maximal magnetization stayed unaffected. Ferromagnetic coupling was observed in ternary alloys of DyRhGd and DyRhNi with an increased Curie temperature, larger initial permeability, and
high-field magnetization which was best for (DyRh)85Gd15 with μ0MS,4K[Gd15] = (2.10 ± 0.13)T. DyRhFe and DyRhCo showed antiparallel coupling of the spontaneous magnetic moments.