971 resultados para Y3AL5O12 CERAMICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Based on a maxillary premolar restored with laminate veneer and using the 3-D finite element analysis (FEA) and mCT data, the aim of this study was to evaluate the influence of different types of buccal cusp reduction on the stress distribution in the porcelain laminate veneer and in the resin luting cement layer. Methods: Two 3-D FEA models (M) of a maxillary premolar were built from mCT data. The buccal cusp reduction followed two configurations: Mt-buccal cusp completely covered by porcelain laminate veneer; and Mp-buccal cusp partially covered by porcelain laminate veneer. The loading (150 N in 458) was performed on the top of the buccal cusp. The finite element software (Ansys Workbench 10.0) was used to obtain the maximum shear stress (σmax) and maximum principal stress (σmax). Results: The Mp showed reduced the stress (σmax) in porcelain laminate veneer (from-2.3 to 24.5 MPa) in comparison with Mt (from-5.3 to 27.4 MPa). The difference between the peak and lower stress values of σmax in Mp (-6.8 to 26.7 MPa) and Mt (-5.3 to 27.4 MPa) was similar for the resin luting cement layer. The structures not exceeded the ultimate tensile strength or the shear bond strength. Conclusions: Cusp reduction did not affect significant increase in σmax and τmax. The Mt showed better stress distribution (τmax) than Mp. © 2011 Published by Elsevier Ireland on behalf of Japan Prosthodontic Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramics have been widely used for esthetic and functional improvements. The resin cement is the material of choice for bonding ceramics to dental substrate and it can also dictate the final esthetic appearance and strength of the restoration. The correct use of the wide spectrum of resin luting agents available depends on the dental tooth substrate. This article presents three-year clinical results of a 41 years old female patient B.H.C complaining about her unattractive smile. Two all-ceramic crowns and two laminates veneers were placed in the maxillary incisors and cemented with a self-adhesive resin luting cement and conventional resin luting cement, respectively. After a three-year follow-up, the restorations and cement/teeth interface were clinically perfect with no chipping, fractures or discoloration. Proper use of different resin luting cements shows clinical appropriate behavior after a three-year follow-up. Self-adhesive resin luting cement may be used for cementing all-ceramic crowns with high predictability of success, mainly if there is a large dentin surface available for bonding and no enamel at the finish line. Otherwise, conventional resin luting agent should be used for achieving an adequate bonding strength to enamel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the influence of different air abrasion protocols on the surface roughness of an yttria-stabilized polycrystalline tetragonal zirconia) (Y-TZP) ceramic, as well as the surface topography of the ceramic after the treatment. Method: Fifty-four specimens (7.5×4×7.5mm) obtained from two ceramic blocks (LAVA, 3M ESPE) were flattened with fine-grit sandpaper and subjected to sintering in the ceramic system's specific firing oven. Next, the specimens were embedded in acrylic resin and the surfaces to be treated were polished in a polishing machine using sandpapers of decreasing abrasion (600- to 1,200-grit) followed by felt discs with 10μm and 3μm polishing pastes and colloidal silica. The specimens were then randomly assigned to 9 groups, according to factors particle and pressure(n=6): Gr1- control; Gr2- Al 2O 3(50μm)/2.5 bar; Gr3- Al 2O 3(110μm)/2.5 bar; Gr4- SiO 2(30μm)/2.5 bar; Gr5- SiO 2(30μm)/2.5 bar; Gr6- Al 2O 3(50μm)/3.5 bar; Gr7- Al2O3(110μm)/3.5 bar; Gr8- SiO 2(30μm)/3.5 bar; Gr9- SiO 2(30μm)/3.5 bar. After treatments, surface roughness was analyzed by a digital optical profilometer and the morphology was examined by scanning electron microscopy (SEM). Data (μm) were subjected to statistical analysis by Dunnett's test (5%), two-way ANOVA and Tukey's test (5%). Results: The type of particle (p=0.0001) and the pressure (p=0.0001) used in the air abrasion protocols influenced the surface roughness values among the experimental groups (ANOVA). The mean surface roughness values (μm) obtained for the experimental groups (Gr2 to Gr9) were, respectively: 0.37 D; 0.56 BC; 0.46 BC; 0.48 CD; 0.59 BC; 0.82 A; 0.53B CD; 0.67 AB. The SEM analysis revealed that Al 2O 3, regardless of the particle size and pressure used, caused damage to the surface of the specimens, as it produced superficial damages on the ceramic, in the form of grooves and cracks. Conclusion: Al2O3 (110 μm/3.5 bar) air abrasion promoted the highest surface roughness on the ceramics, but it does not mean that this protocol promotes better ceramic-cement union compared to the other air abrasion protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μT BS) between a feldspathic ceramic and two composites. Forty blocks (6.0 × 6.0 × 5.0 mm 3) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm2 ± 0.2 mm) were stored in distilled water at 37°C for 30 days and submitted to thermocycling (7,000 cycles; 5°C/55°C ± 1°C). The μT BS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (α = 0.05). The surface treatments significantly affected the results (P < 0.05); no difference was observed between the composites (P > 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Bioactive glass and bioactive glass-ceramic cone implants were placed in the rabbit eviscerated socket to assess their biocompatibility. Methods: Fifty-one Norfolk albino rabbits underwent evisceration of the right eye followed by implantation of cones made from Bioglass® 45S5 (control group) and two types of bioactive glass-ceramic (Biosilicate®), a single- and a two-phase bioactive glass-ceramic implants into the scleral cavity. Postoperative reactions, animal behavior and socket conditions were monitored daily. Clinical exam, biochemical evaluations, and orbit computed tomographic scan were done at 7, 90, and 180 days post-procedure. After that, the animals were euthanized, and the orbital content was removed and prepared to light microscopy with morphometric evaluation and scanning electron microscopy examination. Statistical analysis was done by parametric and non-parametric analysis of variance, complemented by Dunn's and Tukey's tests (p<0.05). Results: All animals did not develop systemic toxicity throughout the experimental period and also did not have orbit infection, implant migration or extrusion. Morphological analysis demonstrated pseudocapsule around all implants. Bioglass® and single-phase Biosilicate® implants induced less inflammation and pseudocapsule formation than two-phase Biosilicate® cones. Seven days post-procedure, the inflammatory reaction was intense and gradually decreased throughout the experiment. Tissue reaction was least intense in animals receiving Bioglass® implants. Conclusions: We observe discrete differences among the studied materials, with best responses obtained with use of Bioglass® 45S5 and single-phase Biosilicate®. The authors agree these implants might be useful in the management of the anophthalmic socket. © 2012 Informa Healthcare USA, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead zirconate titanate Pb(Zr 0.50Ti 0.50)O 3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100) orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. Results suggest that Schottky barriers and/or mechanical coupling near the filmsubstrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BaCe 0.9-xNb xY 0.1O 3-δ (where x=0, 0.01, 0.03 and 0.05) powders were synthesized by solid-state reaction to investigate the influence of Nb concentration on chemical stability and electrical properties of the sintered samples. The dense electrolyte pellets were formed from the powders after being uniaxially pressed and sintered at 1550 °C. The electrical conductivities determined by impedance measurements in temperature range of 550-750 °C in different atmospheres (dry argon and wet hydrogen) showed a decreasing trend with an increase of Nb content. For all samples higher conductivities were observed in the wet hydrogen than in dry argon atmosphere. The chemical stability was enhanced with increasing of Nb concentration. It was found that BaCe 0.87Nb 0.03Y 0.1O 3-δ is the optimal composition that satisfies the opposite demands for electrical conductivity and chemical stability, reaching 0.8×10 -2 S cm -1 in wet hydrogen at 650 °C compared to 1.01×10 -2 S cm -1 for undoped electrolyte. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigate the correlations between structural and rheological properties of emulsified aqueous sol and the porous microstructure of monolithic zirconia foams, manufactured by the integrative combination of the sol-gel and emulsification processes. Macroporous zirconia ceramics prepared using different amounts of decahydronaphthalene, as oil phase, are compared in terms of the emulsion microstructure and ceramic porosity. A combination of electrical conductivity, oil droplet diameter, and rheological measurements was used to highlight the key effect of the dynamic structural properties of the emulsion on the porosity of the ceramic zirconia foam. The minimization of drying shrinkage by appropriate sol-gel mineralization of the oil droplet wall enabled versatile and easy tuning of the ceramic foam microstructure, by fine adjustment of the emulsion characteristics. The foam with the highest porosity (90%) and the lowest bulk density (0.40 g cm-3) was prepared from emulsion with 80 wt% of decahydronaphthalene, which also showed a bicontinuous structure and elevated flow consistency. © The Royal Society of Chemistry 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite films made of lead zirconate titanate ceramic particles coated with polyaniline and poly(vinylidene fluoride) - PZT-PAni/PVDF were produced by hot pressing the powder mixtures in the desired ceramic volume fraction. The ceramic particles were coated during the polyaniline synthesis and the conductivity of the conductor polymer was controlled by different degrees of protonation. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ac and dc electrical measurements, the longitudinal d33 piezo coefficient and the photopyroelectric response. Results showed that the presence of PAni increased the dielectric permittivity of the composite and allowed better efficiency in the poling process, which increased the piezo- and pyroelectric activities of the composite film and reduced both the poling time and the poling electric field. The thermal sensing of the material was also analyzed, showing that this composite can be used as pyroelectric sensor. © 2013 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processing of the YMn2O5 powder is very challenging, since it decomposes to YMnO3 and Mn3O4 at temperatures close to 1180 °C, while samples consolidation commonly demands high temperatures. The main goal of this work is to investigate a possibility to prepare thick films of YMn2O5, since their deposition generally requires significantly lower temperatures. Multiferroic YMn 2O5 was synthesized by the hydrothermal method from Y(CH3COO)3·xH2O, Mn(CH 3COO)2·4H2O and KMnO4 precursors. XRD, FE-SEM and TEM analysis showed that the obtained powder was monophasic, with orthorhombic crystal structure and columnar particle shape with mean diameter and length of around 20 and 50 nm, respectively. The obtained powder was suspended in isopropyl alcohol with addition of appropriate binder and deflocculant. This suspension was used for electrophoretic deposition of YMn2O5 thick films under the high-voltage conditions and electric fields ranging from 250 to 2125 V/cm. The films obtained at 1000 V/cm and higher electric fields showed good adhesion, particle packing, homogeneity and very low porosity. It was shown that the deposition in extremely high electric fields (KC=2125 V/cm) can influence the crystal orientation of the films, resulting in formation of preferentially oriented films. © 2012 Elsevier Ltd and Techna Group S.r.l.