991 resultados para Ventricular assist devices
Resumo:
Scanning Probes for Fuel Cells and Local Electrochemistry
Resumo:
Objectives: This study sought to investigate the effect of a multiple micronutrient supplement on left ventricular ejection fraction (LVEF) in patients with heart failure. Background: Observational studies suggest that patients with heart failure have reduced intake and lower concentrations of a number of micronutrients. However, there have been very few intervention studies investigating the effect of micronutrient supplementation in patients with heart failure. Methods: This was a randomized, double-blind, placebo-controlled, parallel-group study involving 74 patients with chronic stable heart failure that compared multiple micronutrient supplementation taken once daily versus placebo for 12 months. The primary endpoint was LVEF assessed by cardiovascular magnetic resonance imaging or 3-dimensional echocardiography. Secondary endpoints were Minnesota Living With Heart Failure Questionnaire score, 6-min walk test distance, blood concentrations of N-terminal prohormone of brain natriuretic peptide, C-reactive protein, tumor necrosis factor alpha, interleukin-6, interleukin-10, and urinary levels of 8-iso-prostaglandin F2 alpha. Results: Blood concentrations of a number of micronutrients increased significantly in the micronutrient supplement group, indicating excellent compliance with the intervention. There was no significant difference in mean LVEF at 12 months between treatment groups after adjusting for baseline (mean difference: 1.6%, 95% confidence interval: -2.6 to 5.8, p = 0.441). There was also no significant difference in any of the secondary endpoints at 12 months between treatment groups. Conclusions: This study provides no evidence to support the routine treatment of patients with chronic stable heart failure with a multiple micronutrient supplement. (Micronutrient Supplementation in Patients With Heart Failure [MINT-HF]; NCT01005303).
Integrating Multiple Point Statistics with Aerial Geophysical Data to assist Groundwater Flow Models
Resumo:
The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.
Resumo:
Today's multi-media electronic era is driven by the increasing demand for small multifunctional devices able to support diverse services. Unfortunately, the high levels of transistor integration and performance required by such devices lead to an unprecedented increase of on-chip power that significantly limits the battery lifetime and even poses reliability concerns. Several techniques have been developed to address the power increase, but voltage over-scaling (VOS) is considered to be one of the most effective ones due to the quadratic dependence of voltage on dynamic power consumption. However, VOS may not always be applicable since it increases the delay in all paths of a system and may limit high performance required by today's complex applications. In addition, application of VOS is further complicated since it increases the variations in transistor characteristics imposed by their tiny size which can lead to large delay and leakage variations, making it difficult to meet delay and power budgets. This paper presents a review of various cross-layer design options that can provide solutions for dynamic voltage over-scaling and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems. © 2011 IEEE.
Resumo:
The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling-parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today's systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs ( logic, memory, mixed-signal) that are included in today's complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems.
Resumo:
The paper presents a conceptual discussion of the characterisation and phenomenology of passive intermodulation (PIM) by the localised and distributed nonlinearities in passive devices and antennas. The PIM distinctive nature and its impact on signal distortions are examined in comparison with similar effects in power amplifiers. The main features of PIM generation are discussed and illustrated by the example of PIM due to electro-thermal nonlinearity. The issues of measurement, discrimination and modelling of PIM generated by nonlinearities in passive RF components and antennas are addressed.
Resumo:
A novel approach to the modelling of passive intermodulation (PIM) generation in passive components with distributed weak nonlinearities is outlined. Based upon the formalism of X-parameters, it provides a unified framework for co-design of antenna beamforming networks, filters, combiners, phase shifters and other passive and active devices containing nonlinearities at RF front-end. The effects of discontinuities and complex circuit layouts can be efficiently evaluated with the aid of the equivalent networks of the canonical nonlinear elements. The main concepts are illustrated by examples of numerical simulations of PIM generation in the transmission lines and comparison with the measurement results.