961 resultados para VENTRAL SUBICULUM
Resumo:
Background: Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catechominergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber’s selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Methods: Using identical neuroimaging procedures with [18F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared to healthy controls in a double-blind, randomized, crossover design. Results: While TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex (PCC). While we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. Conclusions: In conclusion, this study showed that serotonin and catecholamines play common and differential roles in the pathophysiology of depression.
Resumo:
Introduction: Cervical vertebral (C) malformation is rarely reported in large breed dogs. Congenital cervical kyphosis (CCK) may result from defects of vertebral segmentation, failure of formation or both. This report describes two cases of C3-C4 CCK in young sighthounds, treated surgically. Case description: An 18-month-old female Deerhound and a six-week-old female Borzoi dog were presented because of the complaints of reluctance to exercise and signs of of neck pain. Both dogs were neurologically normal. Diagnostic imaging revealed C3-C4 deformity, moderate kyphosis, and spinal canal stenosis associated with chronic spinal cord pressure atrophy. Both dogs underwent surgical treatment. Results: A staged two-step surgery starting with dorsal decompression was elected in the Deerhound. After the first surgical procedure, the dog developed focal myelomalacia and phrenic nerve paralysis and was euthanatized. A ventral distraction-fusion technique with two locking plates was performed in the Borzoi. This patient recovered uneventfully and long-term follow-up computed tomography revealed complete spondylodesis. Clinical significance: Until now, CCK has only been described in sighthounds. Congenital cervical kyphosis might be considered a differential diagnosis in these breeds that are presented with signs of cervical pain. Ventral realignment-fusion and bone grafting may be considered for surgical treatment, although the earliest age at which this procedure can and should be performed remains unclear.
Resumo:
We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values.
Resumo:
Humans often evaluate their abilities by comparing their personal performance with that of others. For this process, it is critical whether the comparison turns out in one's favor or against it. Here, we investigate how social comparisons of performance are encoded and integrated on the neural level. We collected functional magnetic resonance images while subjects answered questions in a knowledge quiz that was related to their profession. After each question, subjects received a feedback about their personal performance, followed by a feedback about the performance of a reference group who had been quizzed beforehand. Based on the subjects' personal performance, we divided trials in downward and upward comparisons. We found that upward comparisons correlated with activity in the dorsolateral prefrontal cortex and the anterior insula. Downward comparisons were associated with increased activation in the ventral striatum (VS), the medial orbitofrontal cortex and the ventral anterior cingulate cortex (ACC). The extent to which subjects outperformed the reference group modulated the activity in the VS and in the dorsal ACC. We suggest that the co-activation of the VS and the dorsal ACC contributes to the integration of downward comparisons into the evaluation of personal performance.
Resumo:
Individual risk preferences have a large influence on decisions, such as financial investments, career and health choices, or gambling. Decision making under risk has been studied both behaviorally and on a neural level. It remains unclear, however, how risk attitudes are encoded and integrated with choice. Here, we investigate how risk preferences are reflected in neural regions known to process risk. We collected functional magnetic resonance images of 56 human subjects during a gambling task (Preuschoff et al., 2006). Subjects were grouped into risk averters and risk seekers according to the risk preferences they revealed in a separate lottery task. We found that during the anticipation of high-risk gambles, risk averters show stronger responses in ventral striatum and anterior insula compared to risk seekers. In addition, risk prediction error signals in anterior insula, inferior frontal gyrus, and anterior cingulate indicate that risk averters do not dissociate properly between gambles that are more or less risky than expected. We suggest this may result in a general overestimation of prospective risk and lead to risk avoidance behavior. This is the first study to show that behavioral risk preferences are reflected in the passive evaluation of risky situations. The results have implications on public policies in the financial and health domain.
Resumo:
Tick borne encephalitis virus (TBE) is an endemic infectious agent in northeastern Switzerland causing mainly meningoencephalomyelitis in dogs. We report a canine case of tick born meningoencephalomyelitis resulting in flaccid tetraplegia and, subsequently, fatal respiratory failure. Magnetic resonance imaging (MRI) demonstrated intra-axial bilateral, symmetric, and hyperintense lesions in T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) sequences affecting thalamus, basal nuclei, cerebral white matter and ventral horns of the caudal cervical spine. These radiological findings overlap those described during flavivirus encephalitis affecting human beings. These lesions in MRI and diffusion weighted images correlated with areas of vasogenic edema detected histopathologically. In endemic regions, clinicians should be aware that bilateral, symmetrical hyperintense thalamic lesions in T2WI can be suggestive of flavivirus infection in dogs with encephalitis
Resumo:
INTRODUCTION Pontocerebellar hypoplasia Type 2 (PCH2) is a rare autosomal recessive condition, defined on MRI by a small cerebellum and ventral pons. Clinical features are severe developmental delay, microcephaly and dyskinesia.Ninety percent carry a p.A307S mutation in the TSEN54-gene. Our aim was to describe the natural course including neurological and developmental features and other aspects of care in a homogeneous group of PCH2 patients all carrying the p.A307S mutation. PATIENTS AND METHODS Patients were recruited via the German patients' organizations. Inclusion criteria were imaging findings of PCH2 and a p.A307S mutation. Data were collected using medical reports and patient questionnaires discussed in a standardized telephone interview. RESULTS Thirty-three patients were included. When considering survival until age 11 years, 53% of children had died Weight, length and head circumference, mostly in the normal range at birth, became abnormal, especially head circumference (-5.58 SD at age 5 yrs). Neurologic symptoms: Choreathetosis was present in 88% (62% with pyramidal signs), 12% had pure spasticity. Epileptic seizures were manifest in 82%, status epilepticus in 39%. Non-epileptic dystonic attacks occurred in 33%. General symptoms: feeding difficulties were recorded in 100%, sleep disorder in 96%, apneas in 67% and recurrent infections in 52%; gastroesophageal reflux disease was diagnosed in 73%, 67% got percutaneous endoscopic gastrostomy and 36% a Nissen-fundoplication. Neurodevelopmental data: All children made progress, but on a low level: such as fixing and following with the eyes was seen in 76%, attempting to grasp objects (76%), moderate head control (73%), social smile (70%), rolling from prone to supine (58%), and sitting without support (9%). Ten percent lost achieved abilities on follow-up. The presence of prenatal symptoms did not correlate with outcome. CONCLUSION Phenotype of this genetically homogeneous group of PCH2 children was severe with reduced survival, but compatible with some developmental progress. Our data support the hypothesis of an early onset degeneration which thereafter stabilizes.
Resumo:
Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.
Resumo:
Effective adaptive behavior rests on an appropriate understanding of how much responsibility we have over outcomes in the environment. This attribution of agency to ourselves or to an external event influences our behavioral and affective response to the outcomes. Despite its special importance to understanding human motivation and affect, the neural mechanisms involved in self-attributed rewards and punishments remain unclear. Previous evidence implicates the anterior insula (AI) in evaluating the consequences of our own actions. However, it is unclear if the AI has a general role in feedback evaluation (positive and negative) or plays a specific role during error processing. Using functional magnetic resonance imaging and a motion prediction task, we investigate neural responses to self- and externally attributed monetary gains and losses. We found that attribution effects vary according to the valence of feedback: significant valence × attribution interactions in the right AI, the anterior cingulate cortex (ACC), the midbrain, and the right ventral putamen. Self-attributed losses were associated with increased activity in the midbrain, the ACC and the right AI, and negative BOLD response in the ventral putamen. However, higher BOLD activity to self-attributed feedback (losses and gains) was observed in the left AI, the thalamus, and the cerebellar vermis. These results suggest a functional lateralization of the AI. The right AI, together with the midbrain and the ACC, is mainly involved in processing the salience of the outcome, whereas the left is part of a cerebello-thalamic-cortical pathway involved in cognitive control processes important for subsequent behavioral adaptations.
Resumo:
The molecular analysis of genes influencing human height has been notoriously difficult. Genome-wide association studies (GWAS) for height in humans based on tens of thousands to hundreds of thousands of samples so far revealed ∼200 loci for human height explaining only 20% of the heritability. In domestic animals isolated populations with a greatly reduced genetic heterogeneity facilitate a more efficient analysis of complex traits. We performed a genome-wide association study on 1,077 Franches-Montagnes (FM) horses using ∼40,000 SNPs. Our study revealed two QTL for height at withers on chromosomes 3 and 9. The association signal on chromosome 3 is close to the LCORL/NCAPG genes. The association signal on chromosome 9 is close to the ZFAT gene. Both loci have already been shown to influence height in humans. Interestingly, there are very large intergenic regions at the association signals. The two detected QTL together explain ∼18.2% of the heritable variation of height in horses. However, another large fraction of the variance for height in horses results from ECA 1 (11.0%), although the association analysis did not reveal significantly associated SNPs on this chromosome. The QTL region on ECA 3 associated with height at withers was also significantly associated with wither height, conformation of legs, ventral border of mandible, correctness of gaits, and expression of the head. The region on ECA 9 associated with height at withers was also associated with wither height, length of croup and length of back. In addition to these two QTL regions on ECA 3 and ECA 9 we detected another QTL on ECA 6 for correctness of gaits. Our study highlights the value of domestic animal populations for the genetic analysis of complex traits.
Resumo:
Animal work implicates the brain-derived neurotrophic factor (BDNF) in function of the ventral striatum (VS), a region known for its role in processing valenced feedback. Recent evidence in humans shows that BDNF Val66Met polymorphism modulates VS activity in anticipation of monetary feedback. However, it remains unclear whether the polymorphism impacts the processing of self-attributed feedback differently from feedback attributed to an external agent. In this study, we emphasize the importance of the feedback attribution because agency is central to computational accounts of the striatum and cognitive accounts of valence processing. We used functional magnetic resonance imaging and a task, in which financial gains/losses are either attributable to performance (self-attributed, SA) or chance (externally-attributed, EA) to ask whether BDNF Val66Met polymorphism predicts VS activity. We found that BDNF Val66Met polymorphism influenced how feedback valence and agency information were combined in the VS and in the right inferior frontal junction (IFJ). Specifically, Met carriers' VS response to valenced feedback depended on agency information, while Val/Val carriers' VS response did not. This context-specific modulation of valence effectively amplified VS responses to SA losses in Met carriers. The IFJ response to SA losses also differentiated Val/Val from Met carriers. These results may point to a reduced allocation of attention and altered motivational salience to SA losses in Val/Val compared to Met carriers. Implications for major depressive disorder are discussed.
Resumo:
Thyroid transcription factor 1 (TTF-1) is encoded by the NKX2-1 homeobox gene. Besides specifying thyroid and pulmonary organogenesis, it is also temporarily expressed during embryonic development of the ventral forebrain. We recently observed widespread immunoreactivity for TTF-1 in a case of subependymal giant cell astrocytoma (SEGA, WHO grade I) – a defining lesion of the tuberous sclerosis complex (TSC). This prompted us to investigate additional SEGAs in this regard. We found tumor cells in all 7 specimens analyzed to be TTF-1 positive. In contrast, we did not find TTF-1 immunoreactivity in a cortical tuber or two renal angiomyolipomas resected from TSC patients. We propose our finding of consistent TTF-1 expression in SEGAs to indicate lineage-committed derivation of these tumors from a regionally specified cell of origin. The medial ganglionic eminence, ventral septal region, and preoptic area of the developing brain may represent candidates for the origin of SEGAs. Such lineagerestricted histogenesis may also explain the stereotypic distribution of SEGAs along the caudate nucleus in the lateral ventricles.
Resumo:
Post-traumatic stress disorder (PTSD) is a disorder that involves impaired regulation of the fear response to traumatic reminders. This study tested how women with male-perpetrated interpersonal violence-related PTSD (IPV-PTSD) differed in their brain activation from healthy controls (HC) when exposed to scenes of male-female interaction of differing emotional content. Sixteen women with symptoms of IPV-PTSD and 19 HC participated in this study. During magnetic resonance imaging, participants watched a stimulus protocol of 23 different 20 s silent epochs of male-female interactions taken from feature films, which were neutral, menacing or prosocial. IPV-PTSD participants compared with HC showed (i) greater dorsomedial prefrontal cortex (dmPFC) and dorsolateral prefrontal cortex (dlPFC) activation in response to menacing vs prosocial scenes and (ii) greater anterior cingulate cortex (ACC), right hippocampus activation and lower ventromedial prefrontal cortex (vmPFC) activty in response to emotional vs neutral scenes. The fact that IPV-PTSD participants compared with HC showed lower activity of the ventral ACC during emotionally charged scenes regardless of the valence of the scenes suggests that impaired social perception among IPV-PTSD patients transcends menacing contexts and generalizes to a wider variety of emotionally charged male-female interactions.
Resumo:
The present topical review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human non-verbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be both voluntarily or emotionally controlled. Recent studies in non-human primates and humans revealed that the motor control of facial expressions has a distributed neural representation. At least 5 cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and, finally, the rostral and caudal cingulate cortex. The results of studies in humans and non-human primates suggest that the innervation of the face is bilaterally controlled for the upper part, and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, since they receive input from different structures of the limbic system. This article is protected by copyright. All rights reserved.
Resumo:
Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catecholaminergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber's selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Using identical neuroimaging procedures with [(18)F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared with healthy controls in a double-blind, randomized, crossover design. Although TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex. Although we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. In conclusion, this study showed that serotonin and catecholamines have common and differential roles in the pathophysiology of depression.