997 resultados para Transparent electrode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemically integrated multi-electrode array namely the wire beam electrode (WBE) has been used to characterize the behavior of cerium chloride (CeCl3) and lanthanum chloride (LaCl3) in inhibiting localized corrosion of AA2024-T3 and AA1100. CeCl3 has been found to inhibit AA2024-T3 corrosion in 0.005 M sodium chloride (NaCl) solution by suppressing galvanic corrosion activities and by creating a large number of insignificant anodes. It has also been shown to inhibit localized corrosion of AA1100 in 0.5 M NaCl solution by promoting the random distribution of minor anodes. LaCl3 has been found to inhibit localized corrosion of AA2024-T3 at 1000 ppm, although its efficiency dropped significantly when its concentration decreased to 500 ppm. The addition of CeCl3 and LaCl3 to corrosion testing cells at later stages was unable to effectively suppress existing corrosion anodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the development of a stacked electrode supercapacitor cell using stainless steel meshes as the current collectors and optimised single walled nanotubes (SWNT)-microwave exfoliated graphene oxide (mw rGO) composites as the electrode material. The introduction of mw rGO into a SWNT matrix creates an intertwined porous structure that enhances the electroactive surface area and capacitive performance due to the 3-D hierarchical structure that is formed. The composite structure was optimised by varying the weight ratio of the SWNTs and mw rGO. The best performing ratio was the 90% SWNT-10% mw rGO electrode which achieved a specific capacitance of 306 F g-1 (3 electrode measurement calculated at 20 mV s-1). The 90% SWNT-10% mw rGO was then fabricated into a stacked electrode configuration (SEC) which significantly enhanced the electrode performance per volume (1.43 mW h cm-3, & 6.25 W cm-3). Device testing showed excellent switching capability up to 10 A g-1, and very good stability over 10000 cycles at 1.0 A g-1 with 93% capacity retention. © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel TiO2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO2 nanorods on TiO2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO2 nanorods had lower dye loading than TiO2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO2 nanorods received less resistance than that in TiO2 nanoparticle aggregation. By just applying a thin layer of TiO2 nanorods on TiO2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO2 nanoparticle layer covered with 3 μm thick TiO2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent computing is an emerging computing paradigm where the users can enjoy any kind of service over networks on-demand with any devices, without caring about the underlying deployment details. In transparent computing, all software resources (even the OS) are stored on remote servers, from which the clients can request the resources for local execution in a block-streaming way. This paradigm has many benefits including cross-platform experience, user orientation, and platform independence. However, due to its fundamental features, e.g., separation of computation and storage in clients and servers respectively, and block-streaming-based scheduling and execution, transparent computing faces many new security challenges that may become its biggest obstacle. In this paper, we propose a Transparent Computing Security Architecture (TCSA), which builds user-controlled security for transparent computing by allowing the users to configure the desired security environments on demand. We envision, TCSA, which allows the users to take the initiative to protect their own data, is a promising solution for data security in transparent computing. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible energy devices with high performance and long-term stability are highly promising for applications in portable electronics, but remain challenging to develop. As an electrode material for pseudo-supercapacitors, conducting polymers typically show higher energy storage ability over carbon materials and larger conductivity than transition-metal oxides. However, conducting polymer-based supercapacitors often have poor cycling stability, attributable to the structural rupture caused by the large volume contrast between doping and de-doping states, which has been the main obstacle to their practical applications. Herein, we report a simple method to prepare a flexible, binder-free, self-supported polypyrrole (PPy) supercapacitor electrode with high cycling stability through using novel, hollow PPy nanofibers with porous capsular walls as a film-forming material. The unique fiber structure and capsular walls provide the PPy film with enough free-space to adapt to volume variation during doping/de-doping, leading to super-high cycling stability (capacitance retention > 90% after 11000 charge-discharge cycles at a high current density of 10 A g-1) and high rate capability (capacitance retention ∼ 82.1% at a current density in the range of 0.25-10 A g-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All rights reserved. A graphene nanodots-encaged porous gold electrode via ion beam sputtering deposition (IBSD) for electrochemical sensing is presented. The electrodes were fabricated using Au target, and a composite target of Al and graphene, which were simultaneously sputtered onto glass substrates by Ar ion beam, followed with hydrochloric acid corrosion. The as-prepared graphene nanodots-encaged porous gold electrodes were then used for the analysis of heavy metal ions, e.g. Cu2+ and Pb2+ by Osteryoung square wave voltammetry (OSWV). These porous electrodes exhibited enhanced detection range for the heavy metal ions due to the entrapped graphene nanodots in 3-D porous structure. In addition, it was also found that when the thickness of porous electrode reached 40 nm the detection sensitivity came into saturation. The linear detection range is 0.009-4 μM for Cu2+ and 0.006-2.5 μM for Pb2+. Good reusability and repeatability were also observed. The formation mechanism and 3-D structure of the porous electrode were also investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectra (XPS). This graphene entrapped 3-D porous structure may envision promising applications in sensing devices.