A self-supported, flexible, binder-free pseudo-supercapacitor electrode material with high capacitance and cycling stability from hollow, capsular polypyrrole fibers


Autoria(s): Li, Zhenyu; Cai, Jie; Cizek, Pavel; Niu, Haitao; Du, Yong; Lin, Tong
Data(s)

21/08/2015

Resumo

Flexible energy devices with high performance and long-term stability are highly promising for applications in portable electronics, but remain challenging to develop. As an electrode material for pseudo-supercapacitors, conducting polymers typically show higher energy storage ability over carbon materials and larger conductivity than transition-metal oxides. However, conducting polymer-based supercapacitors often have poor cycling stability, attributable to the structural rupture caused by the large volume contrast between doping and de-doping states, which has been the main obstacle to their practical applications. Herein, we report a simple method to prepare a flexible, binder-free, self-supported polypyrrole (PPy) supercapacitor electrode with high cycling stability through using novel, hollow PPy nanofibers with porous capsular walls as a film-forming material. The unique fiber structure and capsular walls provide the PPy film with enough free-space to adapt to volume variation during doping/de-doping, leading to super-high cycling stability (capacitance retention > 90% after 11000 charge-discharge cycles at a high current density of 10 A g<sup>-1</sup>) and high rate capability (capacitance retention ∼ 82.1% at a current density in the range of 0.25-10 A g<sup>-1</sup>).

Identificador

http://hdl.handle.net/10536/DRO/DU:30076079

Idioma(s)

eng

Publicador

Royal Society of Chemistry

Relação

http://dro.deakin.edu.au/eserv/DU:30076079/li-selfsupported-2015.pdf

http://www.dx.doi.org/10.1039/c5ta03585f

Direitos

2015, Royal Society of Chemistry

Tipo

Journal Article