981 resultados para Thick
Resumo:
Novel Ag on TiO2 films are generated by semiconductor photocatalysis and characterized by ultraviolet-visible (UV/Vis) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), as well as assessed for surface-enhanced Raman scattering (SERS) activity. The nature and thickness of the photodeposited Ag, and thus the degree of SERS activity, is controlled by the time of exposure of the TiO2 film to UV light. All such films exhibit the optical characteristics (λmax ≅ 390 nm) of small (<20 nm) Ag particles, although this feature becomes less prominent as the film becomes thicker. The films comprise quite large (>40 nm) Ag islands that grow and merge with increasing levels of Ag photodeposition. Tested with a benzotriazole dye probe, the films are SERS active, exhibiting activity similar to that of 6-nm-thick vapordeposited films. The Ag/TiO2 films exhibit a lower residual standard deviation (∼25%) compared with Ag vapor-deposited films (∼45%), which is, however, still unacceptable for quantitative work. The sample-to-sample variance could be reduced significantly (<7%) by spinning the film during the SERS measurement. The Ag/TiO2 films are mechanically robust and resistant to removal and damage by scratching, unlike the Ag vapor-deposited films. The Ag/TiO2 films also exhibit no obvious loss of SERS activity when stored in the dark under otherwise ambient conditions. The possible extension of this simple, effective method of producing Ag films for SERS, to metals other than Ag and to semiconductors other than TiO2, is briefly discussed.
Resumo:
The temporal development of laser driven single mode perturbations in thin A1 foils has been measured using extreme ultraviolet (XUV) laser radiography. 15, 30, 70 and 90 mu m single modes were imprinted on 2 mu m thick A1 foils with an optical driver laser at 527 nm for intensities in the range 5 x 10(12) to 1.5 x 10(13) W cm(-2). The magnitude of the imprinted perturbation at the time of shock break out was determined by fitting to the data estimated curves of growth of the Rayleigh-Taylor instability after shock break out. The efficiency of imprinting is independent of perturbation wavelength in the parameter range of this experiment, suggesting little influence of thermal conduction smoothing. The results are of interest for directly driven inertially confined fusion. (C) 1998 American Institute of Physics.
Resumo:
K-alpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 mu m for intensities up to 5x10(20) Wcm(-20). The K-alpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens , Phys. Rev. E 69, 066414 (2004)]. Foils 5 mu m thick show triple-humped plasma expansion patterns at the back and front surfaces. Hybrid code modeling shows that this can be attributed to an increase in the mean energy of the fast electrons emitted at large radii, which only have sufficient energy to form a plasma in such thin targets.
Resumo:
Protons with energies up to 18 MeV have been measured from high density laser-plasma interactions at incident laser intensities of 5 X 10(19) W/cm(2). Up to 10(12) protons with energies greater than 2 MeV were observed to propagate through a 125 mu m thick aluminum target and measurements of their angular deflection were made. It is likely that the protons originate from the front surface of the target and are bent by large magnetic fields which exist in the target interior. To agree with our measurements these fields would be in excess of 30 MG and would be generated by the beam of fast electrons which is also observed.
Resumo:
The use of a charged-particle microbeam provides a unique opportunity to control precisely, the number of particles traversing individual cells and the localization of dose within the cell. The accuracy of 'aiming' and of delivering a precise number of particles crucially depends on the design and implementation of the collimation and detection system. This report describes the methods available for collimating and detecting energetic particles in the context of a radiobiological microbeam. The arrangement developed at the Gray Laboratory uses either a 'V'-groove or a thick-walled glass capillary to achieve 2-5 mu m spatial resolution. The particle detection system uses an 18 mu m thick transmission scintillator and photomultiplier tube to detect particles with >99% efficiency.
Resumo:
The Gray Laboratory charged-particle microbeam has been used to assess the clonogenic ability of Chinese hamster V79 cells after irradiation of their nuclei with a precisely defined number of protons with energies of 1.0 and 3.2 MeV. The microbeam uses a 1-mum. silica capillary collimator to deliver protons to subcellular targets with high accuracy. The detection system is based on a miniature photomultiplier tube positioned above the cell dish, which detects the photons generated by the passage of the charged particles through an 18-mum-thick scintillator placed below the cells. With this system, a detection efficiency of greater than 99% is achieved. The cells are plated on specially designed dishes (3-mum-thick Mylar base), and the nuclei are identified by fluorescence microscopy. After an incubation period of 3 days, the cells are revisited individually to assess the formation of colonies from the surviving cells. For each energy investigated, the survival curve obtained for the microbeam shows a significant deviation below I Gy from a response extrapolated using the LQ model for the survival data above 1 Gy. The data are well fitted by a model that supports the hypothesis that radioresistance is induced by low-dose hypersensitivity. These studies demonstrate the potential of the microbeam for performing studies of the effects of single charged particles on cells in vitro. The hypersensitive responses observed are comparable with those reported by others using different radiations and techniques. (C) 2001 by Radiation Research Society.
Resumo:
The Gymnogongrus devoniensis (Greville) Schotter complex in the North Atlantic Ocean was elucidated by comparative molecular, morphological, and culture studies. Restriction fragment length patterns and hybridization data on organellar DNA revealed two distinct taxa in samples from Europe and eastern Canada. Nucleotide sequences for the intergenic spacer between the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and the adjoining regions of both genes, differed by 12.5-13.4% between the two taxa. One of the taxa, which included material from the type locality of G. devoniensis at Torbay, Devon, England, was taken to represent authentic G. devoniensis. Within this taxon, samples from Ireland, England, northern France, northern Spain, and southern Portugal showed great morphological variation, particularly in habit, but their Rubisco spacer sequences were identical or differed by only a single nucleotide. Constant morphological features included the development, from a single auxiliary cell, of the spherical cystocarp with a thick mucilage sheath that appears to be typical of Gymnogongrus species with internal cystocarps. Two life-history types were found. Northern isolates underwent a direct-type life history, recycling apomictic females by carpospores, whereas the Portuguese isolate followed a heteromorphic life history in which carpospores gave rise to a crustose tetrasporophyte.
Resumo:
PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (d(PZO) similar to 5-160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (d(PZO) <= 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with d(PZO) similar to 22 nm and became abundant in the thicker films. Nanobeam electron diffraction and room-temperature micro-Raman measurements revealed that the stabilization of the rhombohedral phase of PZO could be attributed to the epitaxial strain accommodated by the heterostructures. Room-temperature polarization vs electric field measurements performed on different samples showed characteristic double hysteresis loops of antiferroelectric materials accompanied by a small remnant polarization for the thick PZO films (dPZO >= 50 nm). The remnant polarization increased by reducing the PZO layer thickness, and a ferroelectric like hysteresis loop was observed for the sample with d(PZO) similar to 22 nm. Local ferroelectric properties measured by piezoresponse force microscopy also exhibited a similar thickness-dependent antiferroelectric-ferroelectric transition. Room-temperature electrical properties observed in the PZO thin films in correlation to their structural characteristics suggested that a ferroelectric rhombohedral phase could be stabilized in thin epitaxial PZO films experiencing large interfacial compressive stress.
Resumo:
Composites of recycled carbon fiber (CF) with up to 30 wt % loading with polyethylene (PE) were prepared via melt compounding. The morphology of the composites and the degree of dispersion of the CF in the PE matrix was examined using scanning electron microscopy, and revealed the CF to be highly dispersed at all loadings and strong interfacial adhesion to exist between the CF and PE. Raman and FTIR spectroscopy were used to characterize the surface chemistry and potential bonding sites of recycled CF. Both the Young's modulus and ultimate tensile stress increased with increasing CF loading, but the percentage stress at break was unchanged up to 5 wt % loading, then decreased with further successive addition of CF. The effect of CF on the elastic modulus of PE was examined using the Halpin-Tsai and modified Cox models, the former giving a better fit with the values determined experimentally. The electrical conductivity of the PE matrix was enhanced by about 11 orders of magnitude on addition of recycled CF with a percolation threshold of 7 and 15 wt % for 500-mu m and 3-mm thick samples. (c) 2007 Wiley Periodicals, Inc.
Resumo:
There is renewed interest in rare-earth elements and gadolinium in particular for a range of studies in coupling physics and applications. However, it is still apparent that synthesis impacts understanding of the intrinsic magnetic properties of thin gadolinium films, particularly for thicknesses of topicality. We report studies on 50nm thick nanogranular polycrystalline gadolinium thin films on SiO2 wafers that demonstrate single-crystal like behavior. The maximum in-plane saturation magnetization at 4K was found to be 4pMS4K = (2.61±0.26)T with a coercivity of HC4K = (160±5)Oe. A maximum Curie point of TC = (293±2)K was measured via zero-field-cooled - field-cooled magnetization measurements in close agreement with values reported in bulk single crystals. Our measurements revealed magnetic transitions at T1 = (12±2)K (as deposited samples) and T2 = (22±2)K (depositions on heated substrates) possibly arising from the interaction of paramagnetic fcc grains with their ferromagnetic hcp counterparts.
Resumo:
Approach:
In-situ passive gradient comparative artificial tracer testing, undertaken using solutes (Uranine and Iodide), Bacteria (E.coli and P.putida) and bacteriophage (H40/1), permitted comparison of the mobility of different sized microorganisms relative to solutes in the sand and gravel aquifer underlying Dornach, Germany.
Tracer breakthrough curves reveal that even though uranine initially arrived at observation wells at the same time as microbiological tracers, maximum relative concentrations were sometimes less than those of microbiological tracers, while solute breakthrough curves proved more disperse.
Monitoring uranine breakthrough with depth suggested tracers arrived in observation wells in discrete 0.5m-1m thick intervals, over the aquifer’s 12m saturated thickness. Nearby exposures of aquifer material suggested that the aquifer consisted of sandy gravels enveloping sequences of open framework (OW) gravel up to 1m thick. Detailed examination of OW units revealed that they contained lenses of silty sand up to 1m long x 30cm thick., while granulometric data suggested that the gravel was two to three orders of magnitude more permeable than the enveloping sandy gravel.
Solute and microorganism tracer responses could not be simulated using conventional advective-dispersive equation solutions employing the same velocity and dispersion terms. By contrast solute tracer responses, modelled using a dual porosity approach for fractured media (DP-1D) corresponded well to observed field data. Simulating microorganism responses using the same transport terms, but no dual porosity term, generated good model fits and explained the higher relative concentration of the bacteria, compared to the non-reactive solute, even with first order removal to account for lower RR. Geologically, model results indicate that the silty units within open framework gravels are accessible to solute tracers, but not to microorganisms.
Importance:
Results highlight the benefits of geological observations developing appropriate conceptual models of solute and micro organism transport and in developing suitable numerical approaches to quantifying microorganism mobility at scales appropriate for the development of groundwater supply (wellhead) protection zones.
Resumo:
In this paper, a novel approach to automatically sub-divide a complex geometry and apply an efficient mesh is presented. Following the identification and removal of thin-sheet regions from an arbitrary solid using the thick/thin decomposition approach developed by Robinson et al. [1], the technique here employs shape metrics generated using local sizing measures to identify long-slender regions within the thick body. A series of algorithms automatically partition the thick region into a non-manifold assembly of long-slender and complex sub-regions. A structured anisotropic mesh is applied to the thin-sheet and long-slender bodies, and the remaining complex bodies are filled with unstructured isotropic tetrahedra. The resulting semi-structured mesh possesses significantly fewer degrees of freedom than the equivalent unstructured mesh, demonstrating the effectiveness of the approach. The accuracy of the efficient meshes generated for a complex geometry is verified via a study that compares the results of a modal analysis with the results of an equivalent analysis on a dense tetrahedral mesh.
Resumo:
A 40 cm thick primary bed of Old Crow tephra (131 ± 11 ka), an important stratigraphic marker in eastern Beringia, directly overlies a vegetated surface at Palisades West, on the Yukon River in central Alaska. Analyses of insect, bryophyte, and vascular plant macrofossils from the buried surface and underlying organic-rich silt suggest the local presence of an aquatic environment and mesic shrub-tundra at the time of tephra deposition. Autochthonous plant and insect macrofossils from peat directly overlying Old Crow tephra suggest similar aquatic habitats and hydric to mesic tundra environments, though pollen counts indicate a substantial herbaceous component to the regional tundra vegetation. Trace amounts of arboreal pollen in sediments associated with the tephra probably reflect reworking from older deposits, rather than the local presence of trees. The revised glass fission-track age for Old Crow tephra places its deposition closer to the time of the last interglaciation than earlier age determinations, but stratigraphy and paleoecology of sites with Old Crow tephra indicate a late Marine Isotope Stage 6 age. Regional permafrost degradation and associated thaw slumping are responsible for the close stratigraphic and paleoecological relations between Old Crow tephra and last interglacial deposits at some sites in eastern Beringia. © 2009 Elsevier Ltd.
Resumo:
The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.
This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.
Resumo:
The development of the next generation of civil and military transport aircraft will inevitably see an increased use of advanced carbon fibre composite material in the primary structure if performance targets are to be met. One concern in this development is the vulnerability of co-cured and co-bonded stiffened structures to through-thickness stresses at the skin-stiffener interfaces, particularly in stiffener runout regions. These regions are a consequence of the requirement to terminate stiffeners at cutouts, rib intersections, or other structural features which interrupt the stiffener load path.
This work presents the results of an experimental programme investigating the failure of thick-sectioned stiffener runout specimens loaded in uniaxial compression. For all tests, failure initiated at the edge of the runout and propagated across the skin-stiffener interface. It was found that the failure load of each specimen was greatly influenced by intentional changes in the geometric features of these specimens. High frictional forces at the edge of the runout were also deduced from a fractographic analysis, indicating a predominantly Mode II initial failure mode.