975 resultados para TRANSMISSION ELECTRON MICROSCOPY
Resumo:
We report on structural characterization of AlGaN/GaN superlattices grown on sapphire. The superlattice formation is evidenced by high-resolution x-ray diffraction and transmission electron microscopy. The high resolution x-ray diffraction spectra exhibit a pattern of satellite peaks. The in-plane lattice constants of the superlattices indicate the coherent growth of the AlGaN layer onto GaN. The average At composition in the superlattices is determined to be 0.08 by Rutherford backscattering spectroscopy. The average parallel and perpendicular elastic strains for the SLs are determined to be (e(parallel to)) = +0.25% and (e(perpendicular to)) = -0.17%. (c) 2006 Elsevier Ltd. All rights reserved.
Reduction of dislocations in GaN epilayer grown on Si (111) substrates using a GaN intermedial layer
Resumo:
GaN intermedial layers grown under different pressures are inserted between GaN epilayers and AlN/Si(111) substrates. In situ optical reflectivity measurements show that a transition from the three-dimensional (3D) mode to the 2D one occurs during the GaN epilayer growth when a higher growth pressure is used during the preceding GaN intermedial layer growth, and an improvement of the crystalline quality of GaN epilayer will be made. Combining the in situ reflectivity and transmission electron microscopy (TEM) measurements, it is suggested that the lateral growth at the transition of growth mode is favourable for bending of dislocation lines, thus reducing the density of threading dislocations in the epilayer.
Resumo:
We demonstrate a technique based on wet chemical etching that enables quick and accurate evaluation of edge- and screw/mixed-type threading dislocations (TDs) in GaN. Large and small etch pits are formed by phosphoric acid on the etched surfaces. The large etch pits are attributed to screw/mixed TDs and the small ones to edge TDs, according to their locations on the surface and Burgers vectors of TDs. Additionally, the origin of small etch pits is confirmed by a transmission electron microscopy. The difference in the size of etch pits is discussed in view of their origin and merging. Overetching at elevated temperatures or for a long time may result in merging of individual etch pits and underestimating of the density of TDs. Wet chemical etching has also been proved efficient in revealing the distribution of TDs in epitaxial lateral overgrowth GaN.
Resumo:
Single-crystalline alpha-Si3N4 nanowires are controlled to grow perpendicular to the wet-etched trenches in the SiO0.94 film on the plane of the Si substrate without metal catalysis. A detailed characterization is carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photoluminescence at 600 nm from alpha-Si3N4 nanowires is attributed to the recombination at the defect state formed by the Si dangling bond N3 equivalent to Si-center dot. The growth mechanism is considered to be related to the catalysis and nitridation of SiO nanoclusters preferably re-deposited around the inner corner of the trenches, as well as faster Si diffusion along the slanting side walls of the trenches. This simple direction-controlled growth method is compatible with the CMOS process, and could facilitate the fabrication of alpha-Si3N4 nanoelectronic or nanophotonic devices on the Si platform.
Resumo:
Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The open circuit voltage (V-oc) of n-i-p type hydrogenated amorphous silicon (a-Si:H) solar cells has been examined by means of experimental and numerical modeling. The i- and p-layer limitations on V-oc are separated and the emphasis is to identify the impact of different kinds of p-layers. Hydrogenated protocrystalline, nanocrystalline and microcrystalline silicon p-layers were prepared and characterized using Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), optical transmittance and activation energy of dark-conductivity. The n-i-p a-Si:H solar cells incorporated with these p-layers were comparatively investigated, which demonstrated a wide variation of V-oc from 1.042 V to 0.369 V, under identical i- and n-layer conditions. It is found that the nanocrystalline silicon (nc-Si:H) p-layer with a certain nanocrystalline volume fraction leads to a higher V-oc. The optimum p-layer material for n-i-p type a-Si:H solar cells is not found at the onset of the transition between the amorphous to mixed phases, nor is it associated with a microcrystalline material with a large grain size and a high volume fraction of crystalline phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
InAs quantum dots (QDs) were grown on In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (0 0 1) substrates. Atomic force microscopy and transmission electron microscopy study have indicated that In0.15Ga0.85As ridges and InAs QDs formed at the inclined upside of interface misfit dislocations (MDs). By testifying the MDs are mixed 60 degrees dislocations and calculating the surface stress over them when they are 12-180 nm below the surface, we found the QDs prefer nucleating on the side with tensile stress of the MDs and this explained why the ordering of QDs is weak when the InGaAs layer is relatively thick. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Single-walled carbon nanotube (SWNT) rings with a diameter of about 100 nm have been prepared by thermally decomposing hydrocarbon in a floating catalyst system. These rings appeared to consist mostly of SWNT toroids. High resolution transmission electron microscopy showed that these rings were composed of tens of SWNTs with a tightly packed arrangement. The production of SWNT rings was improved through optimizing various growth parameters, such as growth temperature, sublimation temperature of the catalyst, different gas flows and different catalyst components. The growth mechanism of the SWNT rings is discussed. In the field emission measurements we found that field emission from a halved ring is better than that from a whole SWNT ring, which contributed to the better emission from two opened ends of the nanotubes of the halved SWNT ring.
Resumo:
Rutherford backscattering/channeling (RBS/C) and X-ray diffraction (XRD) are used to comprehensively characterize a heterostructure of AlInGaN/GaN/Al2O3(0001). The AlInGaN quaternary layer was revealed to process a high crystalline quality with a minimum yield of 1.4% from RBS/C measurements. The channeling spectrum of (1 (2) under bar 13) exhibits higher dechanneling than that of (0001) at the interface of AlInGaN/GaN. XRD measurements prove a coherent growth of AlInGaN on the GaN template layer. Combining RBS/C and XRD measurements, we found that the interface of GaN/Al2O3 is a nucleation layer, composed of a large amount of disorders and cubic GaN slabs, while the interface of AlInGaN/GaN is free of extra disordering (i.e. compare with the GaN layer). The conclusion is further evidenced by transmission electron microscopy (TEM). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to similar to 9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface. (C) 2006 American Institute of Physics.
Resumo:
Sb-assisted GaInNAs/GaAs quantum wells (QWs) with high (42.5%) indium content were investigated systematically. Transmission electron microscopy, reflection high-energy electron diffraction and photoluminescence (PL) measurements reveal that Sb acts as a surfactant to suppress three-dimensional growth. The improvement in the 1.55 mu m range is much more apparent than that in the 1.3 mu m range.. which can be attributed to the difference in N composition. The PL intensity and the full-width at half maximum of the 1.55 mu m single-QW were comparable with that of the 1.3 Am QWs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.
Resumo:
The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.
Resumo:
Manganese-gallium oxide nanowires were synthesized via in situ Mn doping during nanowire growth using a vapor phase evaporation method. The microstructure and composition of the products were characterized via transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The field and temperature dependence of the magnetization reveal the obvious hysteresis loop and large magnitude of Curie-Weiss temperature. The photoluminescence of the manganese-gallium oxide nanowires were studied in a temperature range between 10 and 300 K. A broad green emission band was observed which is attributed to the T-4(1)-(6)A(1) transition in Mn2+ (3d(5)) ions. (c) 2005 Elsevier B.V. All rights reserved.