970 resultados para TRANSFERABLE POTENTIALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mucosal immunity to the enteric pathogen Shigella flexneri is mediated by secretory IgA (S-IgA) antibodies directed against the O-antigen (O-Ag) side chain of lipopolysaccharide. While secretory antibodies against the O-Ag are known to prevent bacterial invasion of the intestinal epithelium, the mechanisms by which this occurs are not fully understood. In this study, we report that the binding of a murine monoclonal IgA (IgAC5) to the O-Ag of S. flexneri serotype 5a suppresses activity of the type 3 secretion (T3S) system, which is necessary for S. flexneri to gain entry into intestinal epithelial cells. IgAC5's effects on the T3S were rapid (5 to 15 min) and were coincident with a partial reduction in the bacterial membrane potential and a decrease in intracellular ATP levels. Activity of the T3S system returned to normal levels 45 to 90 min following antibody treatment, demonstrating that IgAC5's effects were transient. Nonetheless, these data suggest a model in which the association of IgA with the O-Ag of S. flexneri partially de-energizes the T3S system and temporarily renders the bacterium incapable of invading intestinal epithelial cells. IMPORTANCE: Secretory IgA (S-IgA) serves as the first line of defense against enteric infections. However, despite its well-recognized role in mucosal immunity, relatively little is known at the molecular level about how this class of antibody functions to prevent pathogenic bacteria from penetrating the epithelial barrier. It is generally assumed that S-IgA functions primarily by "immune exclusion," a phenomenon in which the antibody binds to microbial surface antigens and thereby promotes bacterial agglutination, entrapment in mucus, and physical clearance from the gastrointestinal tract via peristalsis. The results of the present study suggest that in addition to serving as a physical barrier, S-IgA may have a direct impact on the ability of microbial pathogens to secrete virulence factors required for invasion of intestinal epithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When certain control parameters of nervous cell models are varied, complex bifurcation structures develop in which the dynamical behaviors available appear classified in blocks, according to criteria of dynamical likelihood. This block structured dynamics may be a clue to understand how activated neurons encode information by firing spike trains of their action potentials.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Posttreatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In natural settings the same sound source is often heard repeatedly, with variations in spectro-temporal and spatial characteristics. We investigated how such repetitions influence sound representations and in particular how auditory cortices keep track of recently vs. often heard objects. A set of 40 environmental sounds was presented twice, i.e. as prime and as repeat, while subjects categorized the corresponding sound sources as living vs. non-living. Electrical neuroimaging analyses were applied to auditory evoked potentials (AEPs) comparing primes vs. repeats (effect of presentation) and the four experimental sections. Dynamic analysis of distributed source estimations revealed i) a significant main effect of presentation within the left temporal convexity at 164-215ms post-stimulus onset; and ii) a significant main effect of section in the right temporo-parietal junction at 166-213ms. A 3-way repeated measures ANOVA (hemisphere×presentation×section) applied to neural activity of the above clusters during the common time window confirmed the specificity of the left hemisphere for the effect of presentation, but not that of the right hemisphere for the effect of section. In conclusion, spatio-temporal dynamics of neural activity encode the temporal history of exposure to sound objects. Rapidly occurring plastic changes within the semantic representations of the left hemisphere keep track of objects heard a few seconds before, independent of the more general sound exposure history. Progressively occurring and more long-lasting plastic changes occurring predominantly within right hemispheric networks, which are known to code for perceptual, semantic and spatial aspects of sound objects, keep track of multiple exposures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent evidence suggests the human auditory system is organized,like the visual system, into a ventral 'what' pathway, devoted toidentifying objects and a dorsal 'where' pathway devoted to thelocalization of objects in space w1x. Several brain regions have beenidentified in these two different pathways, but until now little isknown about the temporal dynamics of these regions. We investigatedthis issue using 128-channel auditory evoked potentials(AEPs).Stimuli were stationary sounds created by varying interaural timedifferences and environmental real recorded sounds. Stimuli ofeach condition (localization, recognition) were presented throughearphones in a blocked design, while subjects determined theirposition or meaning, respectively.AEPs were analyzed in terms of their topographical scalp potentialdistributions (segmentation maps) and underlying neuronalgenerators (source estimation) w2x.Fourteen scalp potential distributions (maps) best explained theentire data set.Ten maps were nonspecific (associated with auditory stimulationin general), two were specific for sound localization and two werespecific for sound recognition (P-values ranging from 0.02 to0.045).Condition-specific maps appeared at two distinct time periods:;200 ms and ;375-550 ms post-stimulus.The brain sources associated with the maps specific for soundlocalization were mainly situated in the inferior frontal cortices,confirming previous findings w3x. The sources associated withsound recognition were predominantly located in the temporal cortices,with a weaker activation in the frontal cortex.The data show that sound localization and sound recognitionengage different brain networks that are apparent at two distincttime periods.References1. Maeder et al. Neuroimage 2001.2. Michel et al. Brain Research Review 2001.3. Ducommun et al. Neuroimage 2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to present an ePortfolio project led for two years in a multilingual and interdisciplinary Master's program in public discourse and communication analysis offered by the Faculty of Arts of the University of Lausanne (Switzerland). Globally, the project - named Learn to communicate skills - offers a reflection about academic skills and their transferability to the professional world. More precisely, the aim of the project is to make students aware of the importance of reflexive learning to make their skills transferable to other contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several lines of research have documented early-latency non-linear response interactions between audition and touch in humans and non-human primates. That these effects have been obtained under anesthesia, passive stimulation, as well as speeded reaction time tasks would suggest that some multisensory effects are not directly influencing behavioral outcome. We investigated whether the initial non-linear neural response interactions have a direct bearing on the speed of reaction times. Electrical neuroimaging analyses were applied to event-related potentials in response to auditory, somatosensory, or simultaneous auditory-somatosensory multisensory stimulation that were in turn averaged according to trials leading to fast and slow reaction times (using a median split of individual subject data for each experimental condition). Responses to multisensory stimulus pairs were contrasted with each unisensory response as well as summed responses from the constituent unisensory conditions. Behavioral analyses indicated that neural response interactions were only implicated in the case of trials producing fast reaction times, as evidenced by facilitation in excess of probability summation. In agreement, supra-additive non-linear neural response interactions between multisensory and the sum of the constituent unisensory stimuli were evident over the 40-84 ms post-stimulus period only when reaction times were fast, whereas subsequent effects (86-128 ms) were observed independently of reaction time speed. Distributed source estimations further revealed that these earlier effects followed from supra-additive modulation of activity within posterior superior temporal cortices. These results indicate the behavioral relevance of early multisensory phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplomityön tavoitteena on määrittää case-yritykselle IT sovellusten käytettävyyden mittarit ja mittausprosessit, kartoittaa markkinoilla tarjollaolevien mittaustyökalujen mahdollisuuksia ja antaa suositus yrityksen tarpeisiin sopivimmista työkaluista. Aluksi työssä tutustutaan yleisesti sovellusten käytettävyyteen, sekä erityisesti sen mittaamiseen ja hallintaan. Case-yrityksen ulkoistettujen tietotekniikkapalveluiden johdosta tarkastelu keskittyy pääosin sovellusten monitorointiin, käytettävyyden hallintaan palveluntasosopimuksilla ja mittausprosesseihin. Lisäksi tutkitaan eri mittausmenetelmiä, määritetään yrityksen tarpeita ja tehdään vertailu työkaluista keskittyen toiminnallisiin ja teknisiin ominaisuuksiin. Päästä päähän sovellusten käytettävyyden mittauksen aloittaminen on iso projekti, josta tämä diplomityö kattaa vain osan. Lukuisat vaihtoehdot ovat harkittava tarkkaan liiketoiminnan kannalta parhaan hyödyn löytämiseksi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multisensory processes facilitate perception of currently-presented stimuli and can likewise enhance later object recognition. Memories for objects originally encountered in a multisensory context can be more robust than those for objects encountered in an exclusively visual or auditory context [1], upturning the assumption that memory performance is best when encoding and recognition contexts remain constant [2]. Here, we used event-related potentials (ERPs) to provide the first evidence for direct links between multisensory brain activity at one point in time and subsequent object discrimination abilities. Across two experiments we found that individuals showing a benefit and those impaired during later object discrimination could be predicted by their brain responses to multisensory stimuli upon their initial encounter. These effects were observed despite the multisensory information being meaningless, task-irrelevant, and presented only once. We provide critical insights into the advantages associated with multisensory interactions; they are not limited to the processing of current stimuli, but likewise encompass the ability to determine the benefit of one's memories for object recognition in later, unisensory contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Pulmonary edema results from a persistent imbalance between forces that drive water into the air space and the physiologic mechanisms that remove it. Among the latter, the absorption of liquid driven by active alveolar transepithelial sodium transport has an important role; a defect of this mechanism may predispose patients to pulmonary edema. Beta-adrenergic agonists up-regulate the clearance of alveolar fluid and attenuate pulmonary edema in animal models. METHODS: In a double-blind, randomized, placebo-controlled study, we assessed the effects of prophylactic inhalation of the beta-adrenergic agonist salmeterol on the incidence of pulmonary edema during exposure to high altitudes (4559 m, reached in less than 22 hours) in 37 subjects who were susceptible to high-altitude pulmonary edema. We also measured the nasal transepithelial potential difference, a marker of the transepithelial sodium and water transport in the distal airways, in 33 mountaineers who were prone to high-altitude pulmonary edema and 33 mountaineers who were resistant to this condition. RESULTS: Prophylactic inhalation of salmeterol decreased the incidence of high-altitude pulmonary edema in susceptible subjects by more than 50 percent, from 74 percent with placebo to 33 percent (P=0.02). The nasal potential-difference value under low-altitude conditions was more than 30 percent lower in the subjects who were susceptible to high-altitude pulmonary edema than in those who were not susceptible (P<0.001). CONCLUSIONS: Prophylactic inhalation of a beta-adrenergic agonist reduces the risk of high-altitude pulmonary edema. Sodium-dependent absorption of liquid from the airways may be defective in patients who are susceptible to high-altitude pulmonary edema. These findings support the concept that sodium-driven clearance of alveolar fluid may have a pathogenic role in pulmonary edema in humans and therefore represent an appropriate target for therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.