995 resultados para Streaming media
Resumo:
SAPO-11 molecular sieves were synthesized from nonaqueous media. The effects of Si and Al sources as well as solvents on the catalytic performance of SAPO-11 were investigated by the hydroisomerization reaction of n-dodecane. The samples were characterized by XRD, XRF, N-2-adsorption, SEM, NH3-TPD, IR-NH3 and Si-29 CP MAS NMR. The SAPO-11 samples synthesized with tetraethoxysilane as the Si source showed higher Si incorporation contents than the SAPO molecular sieves prepared with polymeric Si sources (fumed silica and Si colloidal gel). The reaction results showed that Pt/SAPO-11 catalysts synthesized from ethylene glycol and glycerol media with the monomeric Si and Al sources (tetraethoxysilane, aluminum isopropoxide) exhibited higher catalytic activities than those catalysts with the polymeric Si or Al (pseudo-boehmite) sources, due to the larger external surface area and higher acidity of the former ones. Especially, the catalyst synthesized in an ethylene glycol medium possessed the highest catalytic activity. Over this catalyst, 88% conversion of n-dodecane was achieved at a low temperature of 250 degrees C.
Resumo:
The article considers the arguments that have been made in defence of social media screening as well as issues that arise and may effectively erode the reliability and utility of such data for employers. First, the authors consider existing legal frameworks and guidelines that exist in the UK and the USA, as well as the subsequent ethical concerns that arise when employers access and use social networking content for employment purposes. Second, several arguments in favour of the use of social networking content are made, each of which is considered from several angles, including concerns about impression management, bias and discrimination, data protection and security. Ultimately, the current state of knowledge does not provide a definite answer as to whether information from social networks is helpful in recruitment and selection.
Resumo:
R. Zwiggelaar and M.G.F. Wilson, 'Spectral changes in inhomogeneous media; a quasi-optical approach', Int. J. Infrared Millimeter Waves 14 (10), 2253-2259 (1993)
Resumo:
O'Malley, T. (2002). Media History and Media Studies: aspects of the development of the study of media history in the UK 1945-2000. Media History. 8 (2), 155-173. RAE2008
Resumo:
Barlow, D.; O'Malley, T.; and Mitchell, P. (2005). The Media in Wales: Voices of a Small Nation. Cardiff: University of Wales Press. RAE2008
Resumo:
Griffiths, L.; and O'Malley, T. (2007). Media Literacy in Wales: a Critical Review of Industry and Education Policies. Cyfrwng. 4, pp.7-23. RAE2008
Resumo:
Plakhov, A.Y.; Torres, D., (2005) 'Newton's aerodynamic problem in media of chaotically moving particles', Sbornik: Mathematics 196(6) pp.885-933 RAE2008
Resumo:
Recenzje i sprawozdania z książek
Resumo:
173 hojas : ilustraciones, mapas.
Resumo:
Acousto-optic imaging (AOI) in optically diffuse media is a hybrid imaging modality in which a focused ultrasound beam is used to locally phase modulate light inside of turbid media. The modulated optical field carries with it information about the optical properties in the region where the light and sound interact. The motivation for the development of AOI systems is to measure optical properties at large depths within biological tissue with high spatial resolution. A photorefractive crystal (PRC) based interferometry system is developed for the detection of phase modulated light in AOI applications. Two-wave mixing in the PRC creates a reference beam that is wavefront matched to the modulated optical field collected from the specimen. The phase modulation is converted to an intensity modulation at the optical detector when these two fields interfere. The interferometer has a high optical etendue, making it well suited for AOI where the scattered light levels are typically low. A theoretical model for the detection of acoustically induced phase modulation in turbid media using PRC based interferometry is detailed. An AOI system, using a single element focused ultrasound transducer to pump the AO interaction and the PRC based detection system, is fabricated and tested on tissue mimicking phantoms. It is found that the system has sufficient sensitivity to detect broadband AO signals generated using pulsed ultrasound, allowing for AOI at low time averaged ultrasound output levels. The spatial resolution of the AO imaging system is studied as a function of the ultrasound pulse parameters. A theoretical model of light propagation in turbid media is used to explore the dependence of the AO response on the experimental geometry, light collection aperture, and target optical properties. Finally, a multimodal imaging system combining pulsed AOI and conventional B- mode ultrasound imaging is developed. B-mode ultrasound and AO images of targets embedded in both highly diffuse phantoms and biological tissue ex vivo are obtained, and millimeter resolution is demonstrated in three dimensions. The AO images are intrinsically co-registered with the B-mode ultrasound images. The results suggest that AOI can be used to supplement conventional B-mode ultrasound imaging with optical information.
Resumo:
High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one’s ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis. Complete occlusion and wall- puncture sealing are both possible depending on the exposure conditions. These results concur with prior clinical observations and may prove useful for planning of a more effective procedure in HIFU treatments.
Resumo:
Current research on Internet-based distributed systems emphasizes the scalability of overlay topologies for efficient search and retrieval of data items, as well as routing amongst peers. However, most existing approaches fail to address the transport of data across these logical networks in accordance with quality of service (QoS) constraints. Consequently, this paper investigates the use of scalable overlay topologies for routing real-time media streams between publishers and potentially many thousands of subscribers. Specifically, we analyze the costs of using k-ary n-cubes for QoS-constrained routing. Given a number of nodes in a distributed system, we calculate the optimal k-ary n-cube structure for minimizing the average distance between any pair of nodes. Using this structure, we describe a greedy algorithm that selects paths between nodes in accordance with the real-time delays along physical links. We show this method improves the routing latencies by as much as 67%, compared to approaches that do not consider physical link costs. We are in the process of developing a method for adaptive node placement in the overlay topology, based upon the locations of publishers, subscribers, physical link costs and per-subscriber QoS constraints. One such method for repositioning nodes in logical space is discussed, to improve the likelihood of meeting service requirements on data routed between publishers and subscribers. Future work will evaluate the benefits of such techniques more thoroughly.
Resumo:
To serve asynchronous requests using multicast, two categories of techniques, stream merging and periodic broadcasting have been proposed. For sequential streaming access where requests are uninterrupted from the beginning to the end of an object, these techniques are highly scalable: the required server bandwidth for stream merging grows logarithmically as request arrival rate, and the required server bandwidth for periodic broadcasting varies logarithmically as the inverse of start-up delay. However, sequential access is inappropriate to model partial requests and client interactivity observed in various streaming access workloads. This paper analytically and experimentally studies the scalability of multicast delivery under a non-sequential access model where requests start at random points in the object. We show that the required server bandwidth for any protocols providing immediate service grows at least as the square root of request arrival rate, and the required server bandwidth for any protocols providing delayed service grows linearly with the inverse of start-up delay. We also investigate the impact of limited client receiving bandwidth on scalability. We optimize practical protocols which provide immediate service to non-sequential requests. The protocols utilize limited client receiving bandwidth, and they are near-optimal in that the required server bandwidth is very close to its lower bound.
Resumo:
This dissertation examines the role of communications technology in social change. It examines secondary data on contemporary China arguing that many interpretations of events in China are unsuitable at best and at worst conceptually damages our understanding of social change in China. This is especially the case in media studies under the ‘democratic framework’. It proposes that there is an alternative framework in studying the media and social change. This alternative conceptual framework is termed a zone of interpretative development offering a means by which to discuss events that take place in a mediated environment. Taking a theoretical foundation using the philosophy of Mikhail Bakhtin this dissertation develops a platform with which to understand communication technology from an anthropological perspective. Three media events from contemporary China are examined. The first examines the Democracy Wall event and the implications of using a public sphere framework. The second case examines the phenomenon of the Grass Mud Horse, a symbol that has gained popular purchase as a humorous expression of political dissatisfaction and develops the problems seen in the first case but with some solutions. Using a modification of Lev Vygotskiĭ’s zone of proximal development this symbol is understood as an expression of the collective recognition of a shared experience. In the second example from the popular TV talent show contests in China further expressions of collective experience are introduced. With the evidence from these media events in contemporary China this dissertation proposes that we can understand certain modes of communication as occurring in a zone of interpretative development. This proposed anthropological feature of social change via communication and technology can fruitfully describe meaning-formation in society via the expression and recognition of shared experiences.
Resumo:
Galvanic replacement is a versatile synthetic strategy for the synthesis of alloy and hollow nanostructures. The structural evolution of single crystalline and multiply twinned nanoparticles <20 nm in diameter and capped with oleylamine is systematically studied. Changes in chemical composition are dependent on the size and crystallinity of the parent nanoparticle. The effects of reaction temperature and rate of precursor addition are also investigated. Galvanic replacement of single crystal spherical and truncated cubic nanoparticles follows the same mechanism to form hollow octahedral nanoparticles, a mechanism which is not observed for galvanic replacement of Ag templates in aqueous systems. Multiply twinned nanoparticles can form nanorings or solid alloys by manipulating the reaction conditions. Oleylamine-capped Ag nanoparticles are highly adaptable templates to synthesize a range of hollow and alloy nanostructures with tuneable localised surface plasmon resonance.