995 resultados para Stable carbon
(Table 1) Tie points between IODP Site 306-U1314 benthic d18O and the global benthic d18O stack LR04
Resumo:
Stable carbon and oxygen isotopes from benthic and planktic foraminifers, planktic foraminifer assemblages and ice rafted debris from the North Atlantic Site U1314 (Integrated Ocean Drilling Program Expedition 306) were examined to investigate orbital and millennial-scale climate variability in the North Atlantic and its impact on global circulation focusing on the development of glacial periods during the mid-Pleistocene (ca 800-400 ka). Glacial initiations were characterized by a rapid cooling (6-10 °C in less than 7 kyr) in the mean annual sea surface temperature (SST), increasing benthic d18O values and high benthic d13C values. The continuous increase in benthic d18O suggests a continuous ice sheet growth whereas the positive benthic d13C values indicate that the flow of the Iceland Scotland Overflow water (ISOW) was vigorous. Strong deep water formation in the Norwegian Greenland Sea promoted a high transfer of freshwater from the ocean to the continents. However, low SSTs at Site U1314 suggest a subpolar gyre cooling and freshening that may have reduced deep water formation in the Labrador Sea during glacial initiations. Once the 3.5 per mil threshold in the benthic d18O record was exceeded, ice rafting started and ice sheet growth was punctuated by millennial-scale waning events which returned to the ocean part of the freshwater accumulated on the continents. Ice-rafting events were associated with a rapid reduction in the ISOW (benthic d13C values dropped 0.5-1?) and followed by millennial-scale warmings. The first two millennial-scale warm intervals of each glacial period reached interglacial temperatures and were particularly abrupt (6-10 °C in ~3 kyr). Subsequent millennial-scale warm events were cooler probably because the AMOC was rather reduced as suggested by the low benthic d13C values. These two abrupt warming events that occurred at early glacial periods were also observed in the Antarctic temperature and CO2 records, suggesting a close correlation between both Hemispheres. The comparison of the sea surface proxies with the benthic d18O record (as the Southern sign) indicates the presence of a millennial-scale seesaw pattern similar to that seen during the Last Glacial period.
Resumo:
This dataset contains the results of granulometric and bulk geochemical analyses of Van Veen surface samples obtained by the Alfred Wegener Institute (AWI) in the course of the 2012 and 2013 summer field seasons. The sampling was performed along transects in depths generally <13 m, to a distance of about <5 km off Herschel Island. In 2012, 75 samples in Pauline Cove and in the vicinity of Simpson Point were obtained. Sample collection was expanded in 2013, on transects established the previous year, with additional locations in Tetris Bay and Workboat Passage. Samples consisted of approximately 100 g of the top 3-6 cm of sediment, and were frozen in the field and freeze dried at the AWI before undergoing analytical procedures. Sample locations were recorded with the onboard global positioning system (GPS) unit. Grain size distributions in our study were obtained using laser diffractometry at the AWI (Beckman Coulter LS200) on the <1 mm fraction of samples oxidized with 30% H2O2 until effervescence ceased to remove organics. Some samples were also sieved using a sieve stack with 1 phi intervals. GRADISTAT (Blott and Pye, 2001) was used to calculate graphical grain size statistics (Folk and Ward, 1957). Grain diameters were logarithmically transformed to phi values, calculated as phi=-log2d, where d is the grain diameter in millimeters (Blott and Pye, 2001; Krumbein, 1934). Freeze dried samples were ground and ground using an Elemetar Vario EL III carbon-nitrogen-sulphur analyzer at the AWI to measure total carbon (TC) and total nitrogen (TN). Tungsten oxide was added to the samples as a catalyst to the pyrolysis. Following this analysis, total organic carbon (TOC) was determined using an Elementar VarioMax. Stable carbon isotope ratios of 13C/12C of 118 samples were determined on a DELTAplusXL mass spectrometer (ThermoFisher Scientific, Bremen) at the German Research Centre for Geosciences (GFZ) in Potsdam, Germany . An additional analysis on 69 samples was carried out at the University of Hamburg with an isotope ratio mass spectrometer (Delta V, Thermo Scientific, Germany) coupled to an elemental analyzer (Flash 2000, Thermo Scientific, Germany). Prior to analysis, soil samples were treated with phosphoric acid (43%) to release inorganic carbon. Values are expressed relative to Vienna Peedee belemnite (VPDB) using external standards (USGS40, -26.4 per mil VPDB and IVA soil 33802153, -27.5 per mil VPDB).