996 resultados para Springfield Body Company
Resumo:
Objective: To assess the prevalence of overweight and obesity, and the impact of body mass index (BMI) on maternal and neonatal outcomes, in a UK obstetric population.
Design: Retrospective study.
Setting: A tertiary referral unit in Northern Ireland.
Population: A total of 30 298 singleton pregnancies over an 8-year period, 2004–2011.
Methods: Women were categorised according to World Health Organization classification: underweight (BMI < 18.50 kg/m2); normal weight (BMI 18.50–24.99 kg/m2; reference group); overweight (BMI 25.00–29.99 kg/m2); obese class I (BMI 30.00–34.99 kg/m2); obese class II (BMI 35–39.99 kg/m2); and obese class III (BMI = 40 kg/m2). Maternal and neonatal outcomes were examined using logistic regression, adjusted for confounding variables.
Main outcome measures: Maternal and neonatal outcomes.
Results: Compared with women of normal weight, women who were overweight or obese class I were at significantly increased risk of hypertensive disorders of pregnancy (OR 1.9, 99% CI 1.7–2.3; OR 3.5, 99% CI 2.9–4.2); gestational diabetes mellitus (OR 1.7, 99% CI 1.3–2.3; OR 3.7, 99% CI 2.8–5.0); induction of labour (OR 1.2, 99% CI 1.1–1.3; OR 1.3, 99% CI 1.2–1.5); caesarean section (OR 1.4, 99% CI 1.3–1.5; OR 1.8, 99% CI 1.6–2.0); postpartum haemorrhage (OR 1.4, 99% CI 1.3–1.5; OR 1.8, 1.6–2.0); and macrosomia (OR 1.5, 99% CI 1.3–1.6; OR 1.9, 99% CI 1.6–2.2), with the risks increasing for obese classes II and III. Women in obese class III were at increased risk of preterm delivery (OR 1.6, 99% CI 1.1–2.5), stillbirth (OR 3.0, 99% CI 1.0–9.3), postnatal stay > 5 days (OR 2.1, 99% CI 1.5–3.1), and infant requiring admission to a neonatal unit (OR 1.6, 99% CI 1.0–2.6).
Conclusions: By categorising women into overweight and obesity subclassifications (classes I –III), this study clearly demonstrates an increasing risk of adverse outcomes across BMI categories, with women who are overweight also at significant risk.
Keywords Body mass index, maternal and neonatal outcomes,obesity, pregnancy
Resumo:
In this chapter the authors explore a practice-led approach to understanding the role of the body in music performance.
Many writers have discussed the body in music performance, in improvised music, as well as in electronic music. In this chapter the authors offer new modalities of reflection on the musical body in the interpretation of existing contemporary repertoire. Specifically, the authors discuss a re-interpretation of German composer Karlheinz Stockhausen's musical work 'Tierkreis'. Through the development of a specifically physical approach to the performance, the authors investigate the intrinsic relationship between the body and the music and point to an under-explored modality, which is not a musical choreography, but a choreography that is shaped through the musical body itself. It is a modality in which music itself propels forward choreographic ideas, the body becoming the driving force behind musical interpretation. The authors' thinking is influenced by Susan Kozel’s understanding of performance as an ecosystem (Kozel 2007) and framed within a subjective account of musical embodiment.
By merging theory with praxis the authors offer a deeper understanding of the role of the body in music performance and consider how such contributions might lead to new and exciting interpretive frameworks for existing musical repertoires.
Resumo:
Body to body links are the most scenario dependent form of body centric communications with performance highly dependent on the users' movements, relative positioning and the local operating environment. This paper focuses on line of sight cases which although they should be the most dependent, still have considerable variability depending on local propagation conditions. The results presented in the paper also raise important questions about the statistical characterisation of such links and the effect of different approaches to local mean averaging on fading characteristics. © 2012 IEEE.
Resumo:
Because of its superior time resolution, ultra-wide bandwidth (UWB) transmission can be a highly accurate technique for ranging in indoor localization systems. Nevertheless, the presence of obstructions may deteriorate the ranging performance of the system. Indoor environments are often densely populated with people. However, t h e effect of the human body presence has been scarcely investigated so far within the UWB ranging context. In this work, we investigate this effect by conducting UWB measurements and analyzing the ranging performance of the system. Two measurement campaigns were performed in the 3-5.5 GHz band, in an anechoic chamber and a laboratory environment. The range estimates were obtained by employing the threshold-based first peak detection technique. Analysis results revealed that the human body significantly attenuates the direct-path signal component. On the other hand, in this study it does not introduce a significant range error since the length difference between the diffracted paths around the body and the direct-path is less than the spatial resolution of the measurement setup. © 2012 IEEE.
Resumo:
The characterization and understanding of body to body communication channels is a pivotal step in the development of emerging wireless applications such as ad-hoc personnel localisation and context aware body area networks (CABAN). The latter is a recent innovation where the inherent mobility of body area networks can be used to improve the coexistence of multiple co-located BAN users. Rather than simply accepting reductions in communication performance, sensed changes in inter-network co-channel interference levels may facilitate intelligent inter-networking; for example merging or splitting with other BANs that remain in the same domain. This paper investigates the inter-body interference using controlled measurements of the full mesh interconnectivity between two ambulatory BANs operating in the same environment at 2.45 GHz. Each of the twelve network nodes reported received signal strength to allow for the creation of carrier to interference ratio time series with an overall entire mesh sampling period of 54 ms. The results indicate that even with two mobile networks, it is possible to identify the onset of co-channel interference as the BAN users move towards each other and, similarly, the transition to more favourable physical layer channel conditions as they move apart. © 2011 IEEE.
Resumo:
Purpose: The authors present the unique clinical features of cavitary uveal melanoma. Design: Retrospective chart review. Participants: Eight patients with cavitary uveal melanoma. Main Outcome Measures: The clinical, ultrasonographic, and histopathologic features of eight patients with cavitary melanoma of the ciliary body were studied. Results: In all eyes there was a brown ciliary body mass that blocked transmission of light on trans-scleral transillumination. Ocular ultrasonography revealed a large, single hollow cavity (unilocular 'pseudocyst') in five cases and multiple hollow cavities (multilocular 'pseudocyst') in three cases. The cavity occupied a mean of 55% of the entire mass thickness (range, 31%-79%). In five cases, a basal uveal mass was noted on ultrasonography. Four patients underwent tumor resection; one had enucleation, and three had 1251 radioactive plaque treatment. In the five cases confirmed histopathologically, the cavitation was empty, contained erythrocytes, serous fluid, and/or pigment-laden macrophages. In no case was the cavity lined by necrotic tumor, endothelial cells, or epithelial cells. Conclusion: Ciliary body melanoma can develop an intralesional cavity resembling an intraocular cyst. The presence of a solid mass at the base and a thick wall surrounding the cavity can assist in the differentiation of cavitary melanoma from benign cyst.
Resumo:
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by the instantaneous switching of the transverse field.
Resumo:
This article investigates to what extent the worldwide increase in body mass index (BMI) has been affected by economic globalization and inequality. We used time-series and longitudinal cross-national analysis of 127 countries from 1980 to 2008. Data on mean adult BMI were obtained from the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group. Globalization was measured using the Swiss Economic Institute (KOF) index of economic globalization. Economic inequality between countries was measured with the mean difference in gross domestic product per capita purchasing power parity in international dollars. Economic inequality within countries was measured using the Gini index from the Standardized World Income Inequality Database. Other covariates including poverty, population size, urban population, openness to trade and foreign direct investment were taken from the World Development Indicators (WDI) database. Time-series regression analyses showed that the global increase in BMI is positively associated with both the index of economic globalization and inequality between countries, after adjustment for covariates. Longitudinal panel data analyses showed that the association between economic globalization and BMI is robust after controlling for all covariates and using different estimators. The association between economic inequality within countries and BMI, however, was significant only among high-income nations. More research is needed to study the pathways between economic globalization and BMI. These findings, however, contribute to explaining how contemporary globalization can be reformed to promote better health and control the global obesity epidemic. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Laughter is a frequently occurring social signal and an important part of human non-verbal communication. However it is often overlooked as a serious topic of scientific study. While the lack of research in this area is mostly due to laughter’s non-serious nature, it is also a particularly difficult social signal to produce on demand in a convincing manner; thus making it a difficult topic for study in laboratory settings. In this paper we provide some techniques and guidance for inducing both hilarious laughter and conversational laughter. These techniques were devised with the goal of capturing mo- tion information related to laughter while the person laughing was either standing or seated. Comments on the value of each of the techniques and general guidance as to the importance of atmosphere, environment and social setting are provided.