949 resultados para Solvent Extractable Biomarkers
Resumo:
Silica-gel supported binam-derived prolinamides are efficient organocatalysts for the direct intramolecular and intermolecular aldol reaction under solvent-free conditions using conventional magnetic stirring. These organocatalysts in combination with benzoic acid showed similar results to those obtained under similar homogeneous reaction conditions using an organocatalyst of related structure. For the intermolecular process, the aldol products were obtained at room temperature and using only 2 equiv of the ketone with high yields, regio-, diastereo- and enantioselectivities. Under these reaction conditions, also the cross aldol reaction between aldehydes is possible. The recovered catalyst can be reused up to nine times providing similar results. More interestingly, these heterogeneous organocatalysts can be used in the intramolecular aldol reaction allowing the synthesis of the Wieland–Miescher and ketone analogues with up to 92% ee, with its reused being possible up to five times without detrimental on the obtained results.
Resumo:
Wet unsupported and supported 1,1′-binaphthalene-2,2′-diamine (BINAM) derived prolinamides are efficient organocatalysts under solvent-free conditions at room temperature to perform the synthesis of chiral tacrine analogues in good yields (up to 93%) and excellent enantioselectivies (up to 96%). The Friedländer reaction involved in this process takes place with several cyclohexanone derivatives and 2-aminoaromatic aldehydes, and it is compatible with the presence of either electron-withdrawing or electron-donating groups at the aromatic ring of the 2-aminoaryl aldehyde derivatives used as electrophiles. The reaction can be extended to cyclopentanone derivatives, affording a regioisomeric but separable mixture of products. The use of the wet silica gel supported organocatalyst, under solvent-free conditions, for this process led to the expected product (up to 87% enantiomeric excess), with its reuse being possible at least up to five times.
Resumo:
The use of proline as catalyst for the aldol process has given a boost to the development of organocatalysis as a research area. Since then, a plethora of organocatalysts of diverse structures have been developed for this and other organic transformations under different reaction conditions. The use of an organic molecule as catalyst to promote a reaction meets several principles of Green Chemistry. The implementation of solvent-free methodologies to carry out the aldol reaction was soon envisaged. These solvent-free processes can be performed using conventional magnetic stirring or applying ball milling techniques and are even compatible with the use of supported organocatalysts as promoters, which allows the recovery and reuse of the organocatalysts. In addition, other advantages such as the reduction of the required amount of nucleophile and the acceleration of the reaction are accomplished by using solvent-free conditions leading to a “greener” and more sustainable process.
Resumo:
Aqueous 2,2-dimethoxyacetaldehyde (60% wt solution) is used as an acceptor in aldol reactions, with cyclic and acyclic ketones and aldehydes as donors, organocatalyzed by 10 mol % of N-tosyl-(Sa)-binam-l-prolinamide [(Sa)-binam-sulfo-l-Pro] at rt under solvent-free conditions. The corresponding monoprotected 2-hydroxy-1,4-dicarbonyl compounds are obtained in good yields and with high levels of diastereo- and enantioselectivity mainly as anti-aldols. In the case of 4-substituted cyclohexanones a desymmetrization process takes place to mainly afford the anti,anti-aldols. 2,2-Dimethyl-1,3-dioxan-5-one allows the synthesis of a useful intermediate for the preparation of carbohydrates in higher yield, de and ee than with l-Pro as the organocatalyst.
Resumo:
Enantiomerically pure mono-N-Boc-protected trans-cyclohexa-1,2-diamines are used as organocatalysts for the enantioselective conjugate addition of α,α-disubstituted aldehydes to maleimides. Using a single enantiomer of the organocatalyst, both enantiomeric forms of the resulting Michael adducts bearing a new quaternary stereocenter are obtained in high yields, by only changing the reaction solvent from chloroform (up to 86% ee) to aqueous DMF (up to 84% ee).
Resumo:
Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.
Resumo:
BINAM-prolinamides are very efficient catalyst for the synthesis of non-protected and N-benzyl isatin derivatives by using an aldol reaction between ketones and isatins under solvent-free conditions. The results in terms of diastereo- and enantioselectivities are good, up to 99% de and 97% ee, and higher to those previously reported in the literature under similar reaction conditions. A high variation of the results is observed depending on the structure of the isatin and the ketone used in the process. While 90% of ee and 97% ee, respectively, is obtained by using (Ra)-BINAM-l-(bis)prolinamide as catalyst in the addition of cyclohexanone and α-methoxyacetone to free isatin, 90% ee is achieved for the reaction between N-benzyl isatin and acetone using N-tosyl BINAM-l-prolinamide as catalyst. This reaction is also carried out using a silica BINAM-l-prolinamide supported catalyst under solvent-free conditions, which can be reused up to five times giving similar results.
Resumo:
A simple change in the polarity of the solvent allows both enantiomers of substituted succinimides to be obtained in the enantioselective conjugate addition reaction of aldehydes, mainly α,α-disubstituted, to maleimides catalysed by chiral carbamate-monoprotected trans-cyclohexane-1,2-diamines. Using a single enantiomer of the organocatalyst, both enantiomers of the resulting Michael adducts are obtained in high yields by simply changing the reaction solvent from aqueous DMF (up to 84 % ee) to chloroform (up to 86 % ee). Theoretical calculations are used to explain this uncommon reversal of the enantioselectivity; two transition state orientations of different polarities are differently favoured in polar or nonpolar solvents.
Resumo:
Solution-processed polymer films are used in multiple technological applications. The presence of residual solvent in the film, as a consequence of the preparation method, affects the material properties, so films are typically subjected to post-deposition thermal annealing treatments aiming at its elimination. Monitoring the amount of solvent eliminated as a function of the annealing parameters is important to design a proper treatment to ensure complete solvent elimination, crucial to obtain reproducible and stable material properties and therefore, device performance. Here we demonstrate, for the first time to our knowledge, the use of an organic distributed feedback (DFB) laser to monitor with high precision the amount of solvent extracted from a spin-coated polymer film as a function of the thermal annealing time. The polymer film of interest, polystyrene in the present work, is doped with a small amount of a laser dye as to constitute the active layer of the laser device and deposited over a reusable DFB resonator. It is shown that solvent elimination translates into shifts in the DFB laser wavelength, as a consequence of changes in film thickness and refractive index. The proposed method is expected to be applicable to other types of annealing treatments, polymer-solvent combinations or film deposition methods, thus constituting a valuable tool to accurately control the quality and reproducibility of solution-processed polymer thin films.
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
There is one feature of the sovereign debt crisis in Greece that is widely misunderstood, namely the effective debt burden of the country’s government. Since the start of the crisis, its sovereign debt has been subjected to several restructuring efforts
Resumo:
A large number of evidences correlate elevated levels of homocysteine (Hcys) with a higher cardiovascular diseases (CVDs) risk, especially, atherosclerosis. Similarly, abnormal low levels of the vitamins B6, B9 and B12 are associated to an instability in the methionine cycle with an over production of Hcys. Thus, biomedical sciences are looking forward for a cheaper, faster, precise and accurate analytical methodology to quantify these compounds in a suitable format for the clinical environment. Therefore the objective of this study was the development of a simple, inexpensive and appropriate methodology to use at the clinical level. To achieve this goal, a procedure integrating a digitally controlled (eVol®) microextraction by packed sorbent (MEPS) and an ultra performance liquid chromatography (UPLC) coupled to a photodiode array detector (PDA) was developed to identify and quantify Hcys vitamins B6, B9 and B12. Although different conditions were assayed, we were not able to combine Hcys with the vitamins in the same analytical procedure, and so we proceeded to the optimization of two methods differing only in the composition of the gradient of the mobile phase and the injected volume. It was found that MEPS did not bring any benefit to the quantification of the Hcys in the plasma. Therefore, we developed and validate an alternative method that uses the direct injection of treated plasma (reduced and precipitated). This same method was evaluated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect and precision (intra-and inter-day) and applied to the determination of Hcys in a group composed by patients presenting augmented CVD risk. Good results in terms of selectivity and linearity (R2> 0.9968) were obtained, being the values of LOD and LOQ 0.007 and 0.21 mol / L, respectively. The intra-day precision (1.23-3.32%), inter-day precision (5.43-6.99%) and the recovery rate (82.5 to 93.1%) of this method were satisfactory. The matrix effect (>120%) was, however, higher than we were waiting for. Using this methodology it was possible to determine the amount of Hcys in real plasma samples from individuals presenting augmented CVD risk. Regarding the methodology developed for vitamins, despite the optimization of the extraction technique and the chromatographic conditions, it was found that the levels usually present in plasma are far below the sensitivity we obtained. Therefore, further optimizations of the methodology developed are needed. As conclusion, part of the objectives of this study was achieved with the development of a quick, simple and cheaper method for the quantification of Hcys.
Resumo:
BACKGROUND Apoptosis is a key mechanism involved in ischemic acute kidney injury (AKI), but its role in septic AKI is controversial. Biomarkers indicative of apoptosis could potentially detect developing AKI prior to its clinical diagnosis. METHODS As a part of the multicenter, observational FINNAKI study, we performed a pilot study among critically ill patients who developed AKI (n = 30) matched to critically ill patients without AKI (n = 30). We explored the urine and plasma levels of cytokeratin-18 neoepitope M30 (CK-18 M30), cell-free DNA, and heat shock protein 70 (HSP70) at intensive care unit (ICU) admission and 24h thereafter, before the clinical diagnosis of AKI defined by the Kidney Disease: Improving Global Outcomes -creatinine and urine output criteria. Furthermore, we performed a validation study in 197 consecutive patients in the FINNAKI cohort and analyzed the urine sample at ICU admission for CK-18 M30 levels. RESULTS In the pilot study, the urine or plasma levels of measured biomarkers at ICU admission, at 24h, or their maximum value did not differ significantly between AKI and non-AKI patients. Among 20 AKI patients without severe sepsis, the urine CK-18 M30 levels were significantly higher at 24h (median 116.0, IQR [32.3-233.0] U/L) than among those 20 patients who did not develop AKI (46.0 [0.0-54.0] U/L), P = 0.020. Neither urine cell-free DNA nor HSP70 levels significantly differed between AKI and non-AKI patients regardless of the presence of severe sepsis. In the validation study, urine CK-18 M30 level at ICU admission was not significantly higher among patients developing AKI compared to non-AKI patients regardless of the presence of severe sepsis or CKD. CONCLUSIONS Our findings do not support that apoptosis detected with CK-18 M30 level would be useful in assessing the development of AKI in the critically ill. Urine HSP or cell-free DNA levels did not differ between AKI and non-AKI patients.
Resumo:
Alkanes having unusual saturated isoprenoidal and methyl-branched structures have been isolated from the bitumen of several sediments. The methanogenic biomarkers 2,6,10,15,19-pentamethyleicosane and squalane were found in sediments which also contained bacteriogenic glycerol ethers. However, in one ether-containing sediment, 2,6,10,13,17,21-hexamethyldocosane was tentatively identified and this compound was found in place of the established alkane biomarkers. Other hydrocarbons found were regular C21 and C23 isoprenoid alkanes, compounds which cannot be derived from phytol; two isoprenoids of the type 3,7,11.-polymethylalkane, previously reported only in petroleums; 8-methylheptadecane, a probable biomarker for cyanobacteria and a number of its homologs and other methyl-branched alkanes. Ubiquitous branched-chain alkylbenzenes and a homology of trimethylalkylbenzenes were also isolated. Most, or all, of the compounds reported here are probably not catagenetic products but may represent direct algal or bacterial bioinputs.