Organic distributed feedback laser to monitor solvent extraction upon thermal annealing in solution-processed polymer films
Contribuinte(s) |
Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía Universidad de Alicante. Departamento de Física Aplicada Universidad de Alicante. Departamento de Ingeniería Química Universidad de Alicante. Instituto Universitario de Materiales Física de la Materia Condensada Procesado y Pirólisis de Polímeros |
---|---|
Data(s) |
20/06/2016
20/06/2016
01/09/2016
|
Resumo |
Solution-processed polymer films are used in multiple technological applications. The presence of residual solvent in the film, as a consequence of the preparation method, affects the material properties, so films are typically subjected to post-deposition thermal annealing treatments aiming at its elimination. Monitoring the amount of solvent eliminated as a function of the annealing parameters is important to design a proper treatment to ensure complete solvent elimination, crucial to obtain reproducible and stable material properties and therefore, device performance. Here we demonstrate, for the first time to our knowledge, the use of an organic distributed feedback (DFB) laser to monitor with high precision the amount of solvent extracted from a spin-coated polymer film as a function of the thermal annealing time. The polymer film of interest, polystyrene in the present work, is doped with a small amount of a laser dye as to constitute the active layer of the laser device and deposited over a reusable DFB resonator. It is shown that solvent elimination translates into shifts in the DFB laser wavelength, as a consequence of changes in film thickness and refractive index. The proposed method is expected to be applicable to other types of annealing treatments, polymer-solvent combinations or film deposition methods, thus constituting a valuable tool to accurately control the quality and reproducibility of solution-processed polymer thin films. The work was supported by the Spanish Government (MINECO) and the European Community (FEDER) through grant No. MAT-2011-28167-C02-01. M.M.-V. has been partly supported by a MINECO FPI fellowship (No. BES-2009-020747). |
Identificador |
Sensors and Actuators B: Chemical. 2016, 232: 605-610. doi:10.1016/j.snb.2016.03.162 0925-4005 (Print) 1873-3077 (Online) http://hdl.handle.net/10045/56033 10.1016/j.snb.2016.03.162 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://dx.doi.org/10.1016/j.snb.2016.03.162 |
Direitos |
© 2016 Elsevier B.V. info:eu-repo/semantics/embargoedAccess |
Palavras-Chave | #Solution-process #Polymer films #Thermal annealing #Organic distributed feedback laser #Óptica #Física de la Materia Condensada #Física Aplicada #Ingeniería Química |
Tipo |
info:eu-repo/semantics/article |