935 resultados para Small-signal transfer functions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two isoforms of human interleukin 15 (IL-15) exist. One isoform has a shorter putative signal peptide (21 amino acids) and its transcript shows a tissue distribution pattern that is distinct from that of the alternative IL-15 isoform with a 48-aa signal peptide. The 21-aa signal isoform is preferentially expressed in tissues such as testis and thymus. Experiments using different combinations of signal peptides and mature proteins (IL-2, IL-15, and green fluorescent protein) showed that the short signal peptide regulates the fate of the mature protein by controlling the intracellular trafficking to nonendoplasmic reticulum sites, whereas the long signal peptide both regulates the rate of protein translation and functions as a secretory signal peptide. As a consequence, the IL-15 associated with the short signal peptide is not secreted, but rather is stored intracellularly, appearing in the nucleus and cytoplasmic components. Such production of an intracellular lymphokine is not typical of other soluble interleukin systems, suggesting a biological function for IL-15 as an intracellular molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The final step in glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins consists of a transamidation reaction in which preassembled GPI donors are substituted for C-terminal signal sequences in nascent polypeptides. In previous studies we described a human K562 cell mutant, termed class K, that accumulates fully assembled GPI units but is unable to transfer them to N-terminally processed proproteins. In further work we showed that, unlike wild-type microsomes, microsomes from these cells are unable to support C-terminal interaction of proproteins with the small nucleophiles hydrazine or hydroxylamine, and that the cells thus are defective in transamidation. In this study, using a modified recombinant vaccinia transient transfection system in conjunction with a composite cDNA prepared by 5′ extension of an existing GenBank sequence, we found that the genetic element affected in these cells corresponds to the human homolog of yGPI8, a gene affected in a yeast mutant strain exhibiting similar accumulation of GPI donors without transfer. hGPI8 gives rise to mRNAs of 1.6 and 1.9 kb, both encoding a protein of 395 amino acids that varies in cells with their ability to couple GPIs to proteins. The gene spans ≈25 kb of DNA on chromosome 1. Reconstitution of class K cells with hGPI8 abolishes their accumulation of GPI precursors and restores C-terminal processing of GPI-anchored proteins. Also, hGPI8 restores the ability of microsomes from the mutant cells to yield an active carbonyl in the presence of a proprotein which is considered to be an intermediate in catalysis by a transamidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 10 (IL-10) is a recently described natural endogenous immunosuppressive cytokine that has been identified in human, murine, and other organisms. Human IL-10 (hIL-10) has high homology with murine IL-10 (mIL-10) as well as with an Epstein–Barr virus genome product BCRFI. This viral IL-10 (vIL-10) shares a number of activities with hIL-10. IL-10 significantly affects chemokine biology, because human IL-10 inhibits chemokine production and is a specific chemotactic factor for CD8+ T cells. It suppresses the ability of CD4+ T cells, but not CD8+ T cells, to migrate in response to IL-8. A nonapeptide (IT9302) with complete homology to a sequence of hIL-10 located in the C-terminal portion (residues 152–160) of the cytokine was found to possess activities that mimic some of those of hIL-10. These are: (i) inhibition of IL-1β-induced IL-8 production by peripheral blood mononuclear cell, (ii) inhibition of spontaneous IL-8 production by cultured human monocytes, (iii) induction of IL-1 receptor antagonistic protein production by human monocytes, (iv) induction of chemotactic migration of CD8+ human T lymphocytes in vitro, (v) desensitization of human CD8+ T cells resulting in an unresponsiveness toward rhIL-10-induced chemotaxis, (vi) suppression of the chemotactic response of CD4+ T human lymphocytes toward IL-8, (vii) induction of IL-4 production by cultured normal human CD4+ T cells, (viii) down-regulation of tumor necrosis factor-α production by CD8+ T cells, and (ix) inhibition of class II major histocompatibility complex antigen expression on IFN-γ-stimulated human monocytes. Another nonapeptide (IT9403) close to the NH2-terminal part of hIL-10 did not reveal cytokine synthesis inhibitory properties, but proved to be a regulator of mast cell proliferation. In conclusion, we have identified two functional domains of IL-10 exerting different IL-10 like activities, an observation that suggests that relatively small segments of these signal proteins are responsible for particular biological functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the cloning and characterization of Pichia pastoris PEX19 by complementation of a peroxisome-deficient mutant strain. Import of peroxisomal targeting signal 1- and 2-containing peroxisomal matrix proteins is defective in pex19 mutants. PEX19 encodes a hydrophilic 299-amino acid protein with sequence similarity to Saccharomyces cerevisiae Pex19p and human and Chinese hamster PxF, all farnesylated proteins, as well as hypothetical proteins from Caenorhabditis elegans and Schizosaccharomyces pombe. The farnesylation consensus is conserved in PpPex19p but dispensable for function and appears unmodified under the conditions tested. Pex19p localizes predominantly to the cytosolic fraction. Biochemical and two-hybrid analyses confirmed that Pex19p interacts with Pex3p, as seen in S. cerevisiae, but unexpectedly also with Pex10p. Two-hybrid analysis demonstrated that the amino-terminal 42 amino acids of Pex19p interact with the carboxyl-terminal 335 amino acids of Pex3p. In addition, the extreme carboxyl terminus of Pex19p (67 amino acids) is required for interaction with the amino-terminal 380 amino acids of Pex10p. Biochemical and immunofluorescence microscopy analyses of pex19Δ cells identified the membrane protein Pex3p in peroxisome remnants that were not previously observed in S. cerevisiae. These small vesicular and tubular (early) remnants are morphologically distinct from other Pppex mutant (late) remnants, suggesting that Pex19p functions at an early stage of peroxisome biogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spindle pole body (SPB) in Saccharomyces cerevisiae functions as the microtubule-organizing center. Spc110p is an essential structural component of the SPB and spans between the central and inner plaques of this multilamellar organelle. The amino terminus of Spc110p faces the inner plaque, the substructure from which spindle microtubules radiate. We have undertaken a synthetic lethal screen to identify mutations that enhance the phenotype of the temperature-sensitive spc110–221 allele, which encodes mutations in the amino terminus. The screen identified mutations in SPC97 and SPC98, two genes encoding components of the Tub4p complex in yeast. The spc98–63 allele is synthetic lethal only with spc110 alleles that encode mutations in the N terminus of Spc110p. In contrast, the spc97 alleles are synthetic lethal with spc110 alleles that encode mutations in either the N terminus or the C terminus. Using the two-hybrid assay, we show that the interactions of Spc110p with Spc97p and Spc98p are not equivalent. The N terminus of Spc110p displays a robust interaction with Spc98p in two different two-hybrid assays, while the interaction between Spc97p and Spc110p is not detectable in one strain and gives a weak signal in the other. Extra copies of SPC98 enhance the interaction between Spc97p and Spc110p, while extra copies of SPC97 interfere with the interaction between Spc98p and Spc110p. By testing the interactions between mutant proteins, we show that the lethal phenotype in spc98–63 spc110–221 cells is caused by the failure of Spc98–63p to interact with Spc110–221p. In contrast, the lethal phenotype in spc97–62 spc110–221 cells can be attributed to a decreased interaction between Spc97–62p and Spc98p. Together, these studies provide evidence that Spc110p directly links the Tub4p complex to the SPB. Moreover, an interaction between Spc98p and the amino-terminal region of Spc110p is a critical component of the linkage, whereas the interaction between Spc97p and Spc110p is dependent on Spc98p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contact of cultured mammary epithelial cells with the basement membrane protein laminin induces multiple responses, including cell shape changes, growth arrest, and, in the presence of prolactin, transcription of the milk protein β-casein. We sought to identify the specific laminin receptor(s) mediating the multiple cell responses to laminin. Using assays with clonal mammary epithelial cells, we reveal distinct functions for the α6β4 integrin, β1 integrins, and an E3 laminin receptor. Signals from laminin for β-casein expression were inhibited in the presence of function-blocking antibodies against both the α6 and β1 integrin subunits and by the laminin E3 fragment. The α6-blocking antibody perturbed signals mediated by the α6β4 integrin, and the β1-blocking antibody perturbed signals mediated by another integrin, the α subunit(s) of which remains to be determined. Neither α6- nor β1-blocking antibodies perturbed the cell shape changes resulting from cell exposure to laminin. However, the E3 laminin fragment and heparin both inhibited cell shape changes induced by laminin, thereby implicating an E3 laminin receptor in this function. These results elucidate the multiplicity of cell-extracellular matrix interactions required to integrate cell structure and signaling and ultimately permit normal cell function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ∼60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rom2p is a GDP/GTP exchange factor for Rho1p and Rho2p GTPases; Rho proteins have been implicated in control of actin cytoskeletal rearrangements. ROM2 and RHO2 were identified in a screen for high-copy number suppressors of cik1Δ, a mutant defective in microtubule-based processes in Saccharomyces cerevisiae. A Rom2p::3XHA fusion protein localizes to sites of polarized cell growth, including incipient bud sites, tips of small buds, and tips of mating projections. Disruption of ROM2 results in temperature-sensitive growth defects at 11°C and 37°C. rom2Δ cells exhibit morphological defects. At permissive temperatures, rom2Δ cells often form elongated buds and fail to form normal mating projections after exposure to pheromone; at the restrictive temperature, small budded cells accumulate. High-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1Δ and kar3Δ strains. KAR3 encodes a kinesin-related protein that interacts with Cik1p. Furthermore, rom2Δ strains exhibit increased sensitivity to the microtubule depolymerizing drug benomyl. These results suggest a role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin lacking a N-terminal signal peptide for membrane translocation, was discovered in these complexes as well, and in gradient centrifugation brush border enzymes and galectin-4 formed distinct soluble high molecular weight clusters. Immunoperoxidase cytochemistry and immunogold electron microscopy showed that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half the amount of galectin-4 to be in the microvillar fraction, the rest being associated with insoluble intracellular structures. A direct association between the lectin and aminopeptidase N was evidenced by a colocalization along microvilli in double immunogold labeling and by the ability of an antibody to galectin-4 to coimmunoprecipitate aminopeptidase N and sucrase-isomaltase. Furthermore, galectin-4 was released from microvillar, right-side-out vesicles as well as from mucosal explants by a brief wash with 100 mM lactose, confirming its extracellular localization. Galectin-4 is therefore secreted by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly “trapped” by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border enzymes prevents it from being released from the enterocyte into the intestinal lumen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the isolation and functional analysis of the rfc3+ gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3+ gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3+ is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although Fas ligand (FasL) is well characterized for its capacity to deliver a death signal through its receptor Fas, recent work demonstrates that FasL also can receive signals facilitating antigen (Ag)-specific proliferation of CD8+ T cells. The fact that the gld mutation differentially influences the proliferative capacity of CD8+ and CD4+ T cells presented the intriguing possibility that a single molecule may play opposing roles in these two subpopulations. The present study focuses on how these positive and negative regulatory roles are balanced. We show that naive CD4+ T cells are responsive to FasL-mediated costimulation on encounter with Ag when Fas-mediated death is prevented. Thus, the machinery responsible for transducing the FasL positive reverse signal operates in both CD4+ and CD8+ T cells. Instead, differential control of FasL expression distinguishes the role of FasL in these two T cell subpopulations. FasL costimulation occurs immediately on T cell receptor ligation and correlates with the up-regulation of FasL expression on CD8+ and naive CD4+ T cells, both of which are sensitive to the FasL costimulatory signal. Conversely, FasL-initiated death occurs late in an immune response when high levels of FasL expression are maintained on CD4+ T cells that are sensitive to Fas-mediated death, but not on CD8+ T cells that are relatively insensitive to this signal. This careful orchestration of FasL expression during times of susceptibility to costimulation and conversely, to death, endows FasL with the capacity to both positively and negatively regulate the peripheral T cell compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal recognition particles (SRPs) in the cytosols of prokaryotes and eukaryotes are used to target proteins to cytoplasmic membranes and the endoplasmic reticulum, respectively. The mechanism of targeting relies on cotranslational SRP binding to hydrophobic signal sequences. An organellar SRP identified in chloroplasts (cpSRP) is unusual in that it functions posttranslationally to localize a subset of nuclear-encoded thylakoid proteins. In assays that reconstitute thylakoid integration of the light harvesting chlorophyll-binding protein (LHCP), stromal cpSRP binds LHCP posttranslationally to form a cpSRP/LHCP transit complex, which is believed to represent the LHCP form targeted to thylakoids. In this investigation, we have identified an 18-aa sequence motif in LHCP (L18) that, along with a hydrophobic domain, is required for transit complex formation. Fusion of L18 to the amino terminus of an endoplasmic reticulum-targeted protein, preprolactin, led to transit complex formation whereas wild-type preprolactin exhibited no ability to form a transit complex. In addition, a synthetic L18 peptide, which competed with LHCP for transit complex formation, caused a parallel inhibition of LHCP integration. Translocation of proteins by the thylakoid Sec and Delta pH transport systems was unaffected by the highest concentration of L18 peptide examined. Our data indicate that a motif contained in L18 functions in precursor recruitment to the posttranslational SRP pathway, one of at least four different thylakoid sorting pathways used by chloroplasts.