997 resultados para Skin Absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the addition of water on the absorption of carbon dioxide by the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide was studied experimentally by measuring the low-pressure carbon dioxide solubility and the viscosity of the liquid solvent at temperatures from 303 to 323 K. Water is only partially miscible with the ionic liquid up to a mole fraction of 0.302 at 293 K, 0.321 at 303 K and 0.381 at 323 K. It was observed that the solubility of carbon dioxide decreases with the quantity of water from a mole fraction of 2.63 × 10-2 for the pure ionic liquid at 303.4 K to a value of 1.88 × 10-2, a reduction of 30% of the solubility, for a mole fraction of water of 0.28. The viscosity of the liquid solvent also decreases, up to 40% at 303 K, from 28.6 mPa s for the pure ionic liquid to 16.4 mPa s for a water mole fraction of 0.302.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To investigate the in vivo effects of quercetin following the ingestion of fried onions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are, for the most part, complex peptidomes. While many peptide components have been biologically- and structurally-characterised into discrete "families", some of which are analogues of endogenous vertebrate regulatory peptides, a substantial number are of unique structure and unknown function. Among the components of these secretory peptidomes is an array of protease inhibitors. Inhibitors of trypsin are of widespread occurrence in different taxa and are representative of many established structural classes, including Kunitz, Kazal and Bowman-Birk. However, few protease inhibitors with activity against other specific proteases have been described from this source. Here we report for the first time, the isolation and structural characterisation of an inhibitor of chymotrypsin of Kunitz-type from the skin secretion of the African hyperoliid frog, Kassina senegalensis. To this end, we employed a functional peptidomic approach. This scheme involves fractionation of the peptidome, functional end-point screening, structural characterisation of resultant actives followed by molecular cloning of biosynthetic precursor-encoding cDNA(s). The novel mature and active polypeptide identified consisted of 62 amino acid residues (average molecular mass 6776.24 Da), of which 6 were positionally-conserved cysteines. The P(1) position within the active site was occupied by a phenylalanyl residue. Bioinformatic analysis of the sequence using BLAST, revealed a structural similarity to Kunitz-type chymotrypsin inhibitors from other organisms, ranging from silkworms to snakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an amphibian (Odorrana hejiangensis) skin extract was fractionated by reverse phase HPLC and fractions were screened for trypsin inhibitory activity. Using this initial approach, a novel trypsin inhibitory peptide was detected with an apparent protonated molecular mass of 1804.83Da, as determined by MALDI-TOF mass spectrometry. It was named Hejiang trypsin inhibitor (HJTI) in accordance. The primary structure of the biosynthetic precursor of HJTI was deduced from a cDNA sequence cloned from a skin-derived cDNA library. The primary structure of the encoded predicted mature active peptide was established as: GAPKGCWTKSYPPQPCS (non-protonated monoisotopic molecular mass - 1802.81Da). On the basis of this unequivocal amino acid sequence, a synthetic replicate was synthesized by solid phase Fmoc chemistry. This replicate displayed a moderately potent trypsin inhibition with a K(i) of 388nM. Bioinformatic analysis of the primary structure of this peptide indicated that it was a member of the Bowman-Birk family of protease inhibitors. The substitutions of Gln-14 and Ser-17 by Lys, resulted in an increase in cationicity and a small increase in potency to a K(i) value of 218nM. Neither HJTI nor its synthetic analog, possessed any significant antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.