944 resultados para Site-directed mutation
Resumo:
Housepits have a remarkably short research history as compared to Fennoscandian archaeological research on the Stone Age in general. The current understanding of the numbers and the distribution of Stone Age housepits in the Nordic countries has, for the most part, been shaped by archaeological studies carried out over the last twenty to thirty years. The main subjects of this research are Neolithic housepits, which are archaeological remains of semi-subterranean pithouses. This dissertation consists of five peer-reviewed articles and a synthesis paper. The articles deal with the development of housepits as seen in the data gathered from Finland (the Lake Saimaa area and south-eastern Finland) and Russia (the Karelian Isthmus). This synthesis expands the discussion of the changes observed in the Papers to include Fennoscandian housepit research as a whole. Certain changes in the size, shape, environmental location, and clustering of housepits extended into various cultures and ecological zones in northern Fennoscandia. Previously, the evolution of housepits has been interpreted to have been caused by the adaptation of Neolithic societies to prevailing environmental circumstances or to re-organization following contacts with the agrarian Corded Ware/Battle Axe Cultures spreading to North. This dissertation argues for two waves of change in the pithouse building tradition. Both waves brought with them certain changes in the pithouses themselves and in the practices of locating the dwellings in the environment/landscape. The changes in housepits do not go hand in hand with other changes in material culture, nor are the changes restricted to certain ecological environments. Based on current information, it appears that the changes relate primarily to the spread of new concepts of housing and possibly to new technology, as opposed to representing merely a local response to environmental factors. This development commenced already before the birth of the Corded Ware/Battle Axe Cultures. Therefore, the changes are argued to have resulted from the spreading of new ideas through the same networks that actively distributed commodities, exotic goods, and raw materials over vast areas between the southern Baltic Sea, the north-west Russian forest zone, and Fennoscandia.
Resumo:
Microspherophakia is an autosomal-recessive congenital disorder characterized by small spherical lens. It may be isolated or occur as part of a hereditary systemic disorder, such as Marfan syndrome, autosomal dominant and recessive forms of Weill-Marchesani syndrome, autosomal dominant glaucoma-lens ectopia-microspherophakia-stiffness-shortness syndrome, autosomal dominant microspherophakia with hernia, and microspherophakia-metaphyseal dysplasia. The purpose of this study was to map and identify the gene for isolated microspherophakia in two consanguineous Indian families. Using a whole-genome linkage scan in one family, we identified a likely locus for microspherophakia (MSP1) on chromosome 14q24.1-q32.12 between markers D14S588 and D14S1050 in a physical distance of 22.76 Mb. The maximum multi-point lod score was 2.91 between markers D14S1020 and D14S606. The MSP1 candidate region harbors 110 reference genes. DNA sequence analysis of one of the genes, LTBP2, detected a homozygous duplication (insertion) mutation, c.5446dupC, in the last exon (exon 36) in affected family members. This homozygous mutation is predicted to elongate the LTBP2 protein by replacing the last 6 amino acids with 27 novel amino acids. Microspherophakia in the second family did not map to this locus, suggesting genetic heterogeneity. The present study suggests a role for LTBP2 in the structural stability of ciliary zonules, and growth and development of lens.
Resumo:
The relationship between site characteristics and understorey vegetation composition was analysed with quantitative methods, especially from the viewpoint of site quality estimation. Theoretical models were applied to an empirical data set collected from the upland forests of southern Finland comprising 104 sites dominated by Scots pine (Pinus sylvestris L.), and 165 sites dominated by Norway spruce (Picea abies (L.) Karsten). Site index H100 was used as an independent measure of site quality. A new model for the estimation of site quality at sites with a known understorey vegetation composition was introduced. It is based on the application of Bayes' theorem to the density function of site quality within the study area combined with the species-specific presence-absence response curves. The resulting posterior probability density function may be used for calculating an estimate for the site variable. Using this method, a jackknife estimate of site index H100 was calculated separately for pine- and spruce-dominated sites. The results indicated that the cross-validation root mean squared error (RMSEcv) of the estimates improved from 2.98 m down to 2.34 m relative to the "null" model (standard deviation of the sample distribution) in pine-dominated forests. In spruce-dominated forests RMSEcv decreased from 3.94 m down to 3.16 m. In order to assess these results, four other estimation methods based on understorey vegetation composition were applied to the same data set. The results showed that none of the methods was clearly superior to the others. In pine-dominated forests, RMSEcv varied between 2.34 and 2.47 m, and the corresponding range for spruce-dominated forests was from 3.13 to 3.57 m.
Resumo:
The mechanism of interaction of methoxyamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in enzyme activity, visible absorption spectra, circular dichroism and fluorescence, and by evaluating the rate constant by stopped-flow spectrophotometry. Methoxyamine can be considered as the smallest substituted aminooxy derivative of hydroxylamine. It was a reversible noncompetitive inhibitor (Ki = 25 microM) of SHMT similar to O-amino-D-serine. Like in the interaction of O-amino-D-serine and aminooxyacetic acid, the first step in the reaction was very fast. This was evident by the rapid disappearance of the enzyme-Schiff base absorbance at 425 nm with a rate constant of 1.3 x 10(3) M-1 sec-1 and CD intensity at 430 nm. Concomitantly, there was an increase in absorbance at 388 nm (intermediate I). The next step in the reaction was the unimolecular conversion (1.1 x 10(-3) sec-1) of this intermediate to the final oxime absorbing at 325 nm. The identity of the oxime was established by its characteristic fluorescence emission at 460 nm when excited at 360 nm and by high performance liquid chromatography. These results highlight the specificity in interactions of aminooxy compounds with sheep liver serine hydroxymethyltransferase and that the carboxyl group of the inhibitors enhances the rate of the initial interaction with the enzyme.
Resumo:
Amino acid sequences of proteinaceous proteinase inhibitors have been extensively analysed for deriving information regarding the molecular evolution and functional relationship of these proteins. These sequences have been grouped into several well defined families. It was found that the phylogeny constructed with the sequences corresponding to the exposed loop responsible for inhibition has several branches that resemble those obtained from comparisons using the entire sequence. The major branches of the unrooted tree corresponded to the families to which the inhibitors belonged. Further branching is related to the enzyme specificity of the inhibitor. Examination of the active site loop sequences of trypsin inhibitors revealed that there are strong preferences for specific amino acids at different positions of the loop. These preferences are inhibitor class specific. Inhibitors active against more than one enzyme occur within a class and confirm to class specific sequence in their loops. Hence, only a few positions in the loop seem to determine the specificity. The ability to inhibit the same enzyme by inhibitors that belong to different classes appears to be a result of convergent evolution
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.
Resumo:
The use of buffer areas in forested catchments has been actively researched during the last 15 years; but until now, the research has mainly concentrated on the reduction of sediment and phosphorus loads, instead of nitrogen (N). The aim of this thesis was to examine the use of wetland buffer areas to reduce the nitrogen transport in forested catchments and to investigate the environmental impacts involved in their use. Besides the retention capacity, particular attention was paid to the main factors contributing to the N retention, the potential for increased N2O emissions after large N loading, the effects of peatland restoration for use as buffer areas on CH4 emissions, as well as the vegetation composition dynamics induced by the use of peatlands as buffer areas. To study the capacity of buffer areas to reduce N transport in forested catchments, we first used large artificial loadings of N, and then studied the capacity of buffer areas to reduce ammonium (NH4-N) export originating from ditch network maintenance areas in forested catchments. The potential for increased N2O emissions were studied using the closed chamber technique and a large artificial N loading at five buffer areas. Sampling for CH4 emissions and methane-cycling microbial populations were done on three restored buffer areas and on three buffers constructed on natural peatlands. Vegetation composition dynamics was studied at three buffer areas between 1996 and 2009. Wetland buffer areas were efficient in retaining inorganic N from inflow. The key factors contributing to the retention were the size and the length of the buffer, the hydrological loading and the rate of nutrient loading. Our results show that although the N2O emissions may increase temporarily to very high levels after a large N loading into the buffer area, the buffer areas in forested catchments should be viewed as insignificant sources of N2O. CH4 fluxes were substantially higher from buffers constructed on natural peatlands than from the restored buffer areas, probably because of the slow recovery of methanogens after restoration. The use of peatlands as buffer areas was followed by clear changes in plant species composition and the largest changes occurred in the upstream parts of the buffer areas and the wet lawn-level surfaces, where the contact between the vegetation and the through-flow waters was closer than for the downstream parts and dry hummock sites. The changes in the plant species composition may be an undesired phenomenon especially in the case of the mires representing endangered mire site types, and therefore the construction of new buffer areas should be primarily directed into drained peatland areas.
Resumo:
Usher syndrome (USH) is an inherited blindness and deafness disorder with variable vestibular dysfunction. The syndrome is divided into three subtypes according to the progression and severity of clinical symptoms. The gene mutated in Usher syndrome type 3 (USH3), clarin 1 (CLRN1), was identified in Finland in 2001 and two mutations were identified in Finnish patients at that time. Prior to this thesis study, the two CLRN1 gene mutations were the only USH mutations identified in Finnish USH patients. To further clarify the Finnish USH mutation spectrum, all nine USH genes were studied. Seven mutations were identified: one was a previously known mutation in CLRN1, four were novel mutations in myosin VIIa (MYO7A) and two were a novel and a previously known mutation in usherin (USH2A). Another aim of this thesis research was to further study the structure and function of the CLRN1 gene, and to clarify the effects of mutations on protein function. The search for new splice variants resulted in the identification of eight novel splice variants in addition to the three splice variants that were already known prior to this study. Studies of the possible promoter regions for these splice variants showed the most active region included the 1000 bases upstream of the translation start site in the first exon of the main three exon splice variant. The 232 aa CLRN1 protein encoded by the main (three-exon) splice variant was transported to the plasma membrane when expressed in cultured cells. Western blot studies suggested that CLRN1 forms dimers and multimers. The CLRN1 mutant proteins studied were retained in the endoplasmic reticulum (ER) and some of the USH3 mutations caused CLRN1 to be unstable. During this study, two novel CLRN1 sequence alterations were identified and their pathogenicity was studied with cell culture protein expression. Previous studies with mice had shown that Clrn1 is expressed in mouse cochlear hair cells and spiral ganglion cells, but the expression profile in mouse retina remained unknown. The Clrn1 knockout mice display cochlear cell disruption/death, but do not have a retinal phenotype. The zebrafish, Danio rerio, clrn1 was found to be expressed in hair cells associated with hearing and balance. Clrn1 expression was also found in the inner nuclear layer (INL), photoreceptor layer and retinal pigment epithelium layer (RPE) of the zebrafish retina. When Clrn1 production was knocked down with injected morpholino oligonucleotides (MO) targeting Clrn1 translation or correct splicing, the zebrafish larvae showed symptoms similar to USH3 patients. These larvae had balance/hearing problems and reduced response to visual stimuli. The knowledge this thesis research has provided about the mutations in USH genes and the Finnish USH mutation spectrum are important in USH patient diagnostics. The extended information about the structure and function of CLRN1 is a step further in exploring USH3 pathogenesis caused by mutated CLRN1 as well as a step in finding a cure for the disease.
Resumo:
Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78 % of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions. The large range was sensitive to: (1) the amount of methane transported through aerenchyma, (2) soil pH (± 100 Tg CH4 yr−1), and (3) redox inhibition (± 45 Tg CH4 yr−1).
Resumo:
The accuracy of the initiator tRNA (tRNA(fMet)) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G-C base pairs in the anticodon stem of tRNA(fMet) contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNA(fMet) mutant wherein the three G-C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNA(fMet) mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNA(fMet) levels. Low cellular abundance of the chromosomally encoded tRNA(fMet) allows efficient initiation with the tRNA(fMet) mutant and an elongator tRNA(Gln), revealing that a high abundance of the cellular tRNA(fMet) is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNA(fMet) abundance in proteome remodeling.
Resumo:
Homoallyl alcohols 4a-b and 5a-b undergo smooth oxidative cyclisation to give the corresponding ring enlarged keto-lactones under heterogeneous permanganate oxidation conditions.
Resumo:
Attempts to prepare hydrogen-bond-directed nonlinear optical materials from a 1:1 molar mixture Of D-(+)-dibenzoyltartaric acid (DBT, I) and 4-aminopyridine (4-AP, II) resulted in two salts of different stoichiometry. One of them crystallizes in an unusual 1.5:1 (acid:base) monohydrate salt form III while the other one crystallizes as 1:1 (acid:base) salt IV. Crystal structures of both of the salts were determined from single-crystal X-ray diffraction data. The salt III crystallizes in a monoclinic space group C2 with a = 30.339(l), b = 7.881(2), c = 14.355(1) angstrom, beta = 97.48(1)degrees, V = 3403.1(9) angstrom3, Z = 4, R(w) = 0.058, R(w)= 0.058. The salt IV also crystallizes in a monoclinic space group P2(1) with a = 7.500(1), b = 14.968(2), c = 10.370(1) angstrom, beta = 102.67(1)degrees, V = 1135.9(2) angstrom3, Z = 2, R = 0.043, R(w) = 0.043. Interestingly, two DBT molecules with distinctly different conformation are present in the same crystal lattice of salt III. Extensive hydrogen-bonding interactions are found in both of the salts, and both of them show SHG intensity 1.4-1.6 times that of urea.
Resumo:
Serine hydroxymethyltransferase (SHMT), EC 2.1.2.1, exhibits broad substrate and reaction specificity. In addition to cleaving many 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzed the decarboxylation, transamination and racemization of several substrate analogues of amino acids. To elucidate the mechanism of interaction of substrates, especially L-serine with the enzyme, a comparative study of interaction of L-serine with the enzyme from sheep liver and Escherichia coli, was carried out. The heat stability of both the enzymes was enhanced in the presence of serine, although to different extents. Thermal denaturation monitored by spectral changes indicated an alteration in the apparent T, of sheep liver and E. coli SHMTs from 55 +/- 1 degrees C to 72 +/- 3 degrees C at 40 mM serine and from 67 +/- 1 degrees C to 72 +/- 1 degrees C at 20 mM serine, respectively. Using stopped flow spectrophotometry k values of (49 +/- 5)(.)10(-3) s(-1) and (69 +/- 7).10(-3) s(-1) for sheep liver and E. coli enzymes were determined at 50 mM serine. The binding of serine monitored by intrinsic fluorescence and sedimentation velocity measurements indicated that there was no generalized change in the structure of both proteins. However, visible CD measurements indicated a change in the asymmetric environment of pyridoxal 5'-phosphate at the active site upon binding of serine to both the enzymes. The formation of an external aldimine was accompanied by a change in the secondary structure of the enzymes monitored by far UV-CD spectra. Titration microcalorimetric studies in the presence of serine (8 mM) also demonstrated a single class of binding and the conformational changes accompanying the binding of serine to the enzyme resulted in a more compact structure leading to increased thermal stability of the enzyme.
Resumo:
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.
Resumo:
The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction was purified to homogeneity from anthranilate induced cultures of Aspergillus oryzae using affinity chromatography. The enzyme did not require cofactors like NAD(+), PLP, TPP or metal ions for its activity. There was no spectral evidence for the presence of enzyme bound cofactors. The preparation, which was adjudged homogeneous by the criteria of SDS-PAGE, sedimentation analysis and N-terminal analysis, was characterized for its physicochemical and kinetic parameters. The enzyme was inactivated by group-specific modifiers like diethyl pyrocarbonate (DEPC) and N-ethylmaleimide (NEM). The kinetics of inactivation by DEPC suggested the presence of a single class of essential histidine residues, the second order rate constant of inactivation for which was 12.5 M(-1) min(-1). A single class of cysteine residues was modified by NEM with a second order rate constant of 33 M(-1) min(-1). Substrate analogues protected the enzyme against inactivation by both DEPC and NEM, suggesting the Location of the essential histidine and cysteine to be at the active site of the enzyme. The incorporation of radiolabelled NEM in a differential labelling experiment was 0.73 mol per mol subunit confirming the presence of a single essential cysteine per active-site. Differentially labelled enzyme was enzymatically cleaved and the peptide bearing the label was purified and sequenced. The active-site peptide LLGLAETCK and the N-terminal sequence MLGKIALEEAFALPRFEEKT did not bear any similarity to sequences reported in the Swiss-Prot Protein Sequence Databank, a reflection probably of the unique primary structure of this novel enzyme. The sequences reported in this study will appear in the Swiss-Prot Protein Sequence Databank under the accession number P80402.