994 resultados para Serial novel
Resumo:
A highly regioselective functionalization of indole at the C-4 position by employing an aldehyde functional group as a directing group, and Ru as a catalyst, under mild reaction conditions (open flask) has been uncovered. This strategy to synthesize 4-substituted indoles is important, as this class of privileged molecules serves as a precursor for ergot alkaloids and related heterocyclic compounds.
Resumo:
The reaction of Pd{kappa(2)(C,N)-C6H3Me-3-(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (Ar = 2-MeC6H4; 1) with 4 equiv of PhC C-C(O)OMe in CH2Cl2 afforded Pd{kappa(2)(C,N)-C(Ph)=C(C(O)OMe)C(Ph)=C(C(O)-OMe)C6H3Me-3(N=C(NH Ar)(2))-2}Br] (Ar = 2-MeC6H4; 2) in 70% yield, and the aforementioned reaction carried out with 10 equiv of PhC C-C(O)OR (R = Me, and Et) afforded an admixture of two regioisomers of Pd{kappa(3)(N,C,O)-O=C(OR)-C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)( 2))- 2}Br] (Ar = 2-MeC6H4; R = Me (3a/3b), Et (4a/4b)) in 80 and 87% yields, respectively. In one attempt, the minor regioisomer, 4b, was isolated from the mixture in 6% yield by fractional crystallization. Palladacycles 3a/3b and 4a/4b, upon stirring in CH2Cl2/MeCN (1/1, v/v) mixture at ambient condition for S days, afforded Pd{eta(3)-allyl,(KN)-N-1)-C-5(C(O)OR)(2)Ph3C-(C(O)OR)C6H3Me-3(N=C(NH Ar)(2))(-2)}Br] (Ar = 2-MeC6H4; R = Me (5a/5b), Et (6a/6b)) in 94 and 93% yields, respectively. Palladacycles 3a/3b and 4a/4b, upon reaction with AgOTf in CH2CH2/Me2C(O) (1/1, v/v) mixture at ambient temperature for 15 min, afforded Pd{kappa(3)(N,C,O)-O=C(OR)C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)(2 ))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (7a/7b), Et (8a/8b)) in 79 and 77% yields, respectively. Palladacycles 7a/7b and 8a/ 8b, upon reflux in PhC1 separately for 6 h, or palladacycles 5a/5b and 6a/6b, upon treatment with AgOTf in CH2Cl2/Me2C(O) (7/3, v/v) mixture for 15 min, afforded Pd{(eta(2)-Ph)C5Ph2(C(O)OR)kappa(2)(C,N)-C(C(O)OR)C6H3Me-3(N=C(NHAr) (2))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (9a/9h), Et (10a/10b)) in >= 87% yields. Palladacycles 9a/9b, upon stirring in MeCN in the presence of excess NaOAc followed by crystallization of the reaction mixture in the same solvent, afforded Pd{kappa(3)(N,C,C)-(C6H4)C5Ph2(C(O)OMe)(2)C(C(O)OMe)(2)C6H3Me-3(N=C( NHAr)(2))-2}(NCMe)] (Ar = 2-MeC6H4; 11a/11b) in 82% yield. The new palladacycles were characterized by analytical, IR, and NMR (H-1 and C-13) spectroscopic techniques, and the molecular structures of 2, 3a, 4a, 4b, 5a, 6a, 7a, 9a, 10a, and 11a-d(3) were determined by single crystal X-ray diffraction. The frameworks in the aforementioned palladacycles, except that present in 2, are unprecedented. Plausible pathways for the formation of new palladacycles and the influence of the guanidine unit in 1, substituents in alkynes, reaction conditions, and electrophilicity of the bromide and the triflate upon the frameworks of the insertion products have been discussed.
Resumo:
In the present study, we report the synthesis, characterization of new series of thiazolo3,2-a]pyrimidine-6-carboxylate derivatives 3a-f and 4a-f. The newly synthesized compounds were screened for in vitro antimicrobial and antiviral activities. The probable mode of action of these active compounds was determined through in silico docking study by docking the receptor methionyl-tRNA synthetase and human inosine-5'-monophosphate dehydrogenase (IMPDH) for antibacterial and antiviral activities, respectively. Among the compounds, 4c exhibited excellent in vitro antimicrobial activity against all tested strains with binding and docking energies -35.6 and -12.4 kcal/mol, respectively. The antiviral studies were carried out for the selected compounds in which 4a exhibited 73.69 and 54.42 % of inhibition of buffalopox and camelpox viruses, respectively. Furthermore, compound 4a showed minimum docking and binding energy along with the maximum hydrogen/hydrophobic interaction with IMPDH. The study contributes towards identification and screening of potential antimicrobial and antiviral agent's against the pathogens.
Resumo:
For the first time, two units of KTA have been linked to three units of cyst-di-OMe. The reaction is noteworthy since it involves the formation of six amide bonds leading to a three-fold symmetric 23-cyclophane (3) harboring a cluster of three S-S bridges. The major product is a di-imide (4), arising from the interaction of a cystine NH with a neighbouring activated ester. A third reaction of tethering KTA with a single cyst-di-OMe unit afforded the flexible compound 6 and, with benzidine, the novel linker directed 7 with orthogonally disposed anchor modules.
Resumo:
In our pursuit to develop new potential anticancer leads, we designed a combination of structural units of indole and substituted triazole; and a library of 1-{1-methyl-2-4-phenyl-5-(propan-2-ylsulfanyl)-4H-1,2,4-triazol-3-yl ]-1H-indol-3-yl}methanamine derivatives was synthesized and characterized. Cytotoxic evaluations of these molecules over a panel of three human cancer cell lines were carried out. Few molecules exhibited potent growth inhibitory action against the treated cancer cell lines at lower micro molar concentration. An in vitro assay investigation of these active compounds using recombinant human SIRT1 enzyme showed that one of the compounds (IT-14) inhibited the deacetylation activity of the enzyme. The in vivo study of IT-14 exemplified its promising action by reducing the prostate weight to the body weight ratio in prostate hyperplasia animal models. A remarkable decrease in the disruption of histoarchitecture of the prostate tissues isolated from IT-14 treated animal compared to that of the positive control was observed. The molecular interactions with SIRT1 enzyme were also supported by molecular docking simulations. Hence this compound can act as a lead molecule to treat prostatic hyperplasia. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
A simple and efficient protocol for the synthesis of novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) is described. Initially, p-anisaldehyde 1 was condensed (Mannich reaction) with acetone and ammonium acetate trihydrate afforded 2,6-bis(4-methoxyphenyl)piperidin-4-one 2. Then, methylation followed by oximation with hydroxylamine hydrochloride (NH(2)OHa (TM) HCl) furnished a key scaffold 4. Further, to explore the enhanced biological properties of the piperidin-4-one core i.e. the key scaffold 4 was conjugated with substituted benzoyl chlorides in the presence of anhydrous K2CO3 as base to obtain novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) in excellent yields. The newly synthesized compounds were characterized by elemental analysis, IR, H-1 NMR, C-13 NMR and mass spectroscopic techniques, and screened for their in vitro antioxidant and antimicrobial activities. Most of the compounds exerted positive efficacy towards the biological assays performed. Among the synthesized analogues, compounds 4l and 4m exhibited promising antioxidant activity and on the other hand compounds 4b and 4d manifested persuasive antibacterial activity, whereas compound 4b displayed stupendous antifungal activity against A. flavus strain.
Resumo:
Polyvinyl butyral/functionalized mesoporous silica hybrid composite films have been fabricated by solution casting technique with various weight percentages of functionalized silica. A polyol (tripentaerythritol-electron rich component), which acts as an electron donor to the polymer backbone, was added to enhance the conductivity. The prepared composites were characterized by Fourier transformed infrared spectroscopy and the morphology was evaluated by scanning electron microscopy. Dielectric properties of these freestanding composites were studied using the two-probe method. The dielectric constant and impedance value decreased with the increase in applied frequency as well as with the increase in functionalized silica content in the polyvinyl butyral matrix. An increase in conductivity of the PVB/functionalized silica composites was also observed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Phase-locked loops (PLLs) are necessary in grid connected systems to obtain information about the frequency, amplitude and phase of the grid voltage. In stationary reference frame control, the unit vectors of PLLs are used for reference generation. It is important that the PLL performance is not affected significantly when grid voltage undergoes amplitude and frequency variations. In this paper, a novel design for the popular single-phase PLL topology, namely the second-order generalized integrator (SOGI) based PLL is proposed which achieves minimum settling time during grid voltage amplitude and frequency variations. The proposed design achieves a settling time of less than 27.7 ms. This design also ensures that the unit vectors generated by this PLL have a steady state THD of less than 1% during frequency variations of the grid voltage. The design of the SOGI-PLL based on the theoretical analysis is validated by experimental results.
Resumo:
Analytical closed-form expressions for harmonic distortion factors corresponding to various pulsewidth modulation (PWM) techniques for a two-level inverter have been reported in the literature. This paper derives such analytical closed-form expressions, pertaining to centered space-vector PWM (CSVPWM) and eight different advanced bus-clamping PWM (ABCPWM) schemes, for a three-level neutral-point-clamped (NPC) inverter. These ABCPWM schemes switch each phase at twice the nominal switching frequency in certain intervals of the line cycle while clamping each phase to one of the dc terminals over certain other intervals. The harmonic spectra of the output voltages, corresponding to the eight ABCPWM schemes, are studied and compared experimentally with that of CSVPWM over the entire modulation range. The measured values of weighted total harmonic distortion (WTHD) of the line voltage V-WTHD are used to validate the analytical closed-form expressions derived. The analytical expressions, pertaining to two of the ABCPWM methods, are also validated by measuring the total harmonic distortion (THD) in the line current I-THD on a 2.2-kW constant volts-per-hertz induction motor drive.
Resumo:
In this paper we propose a fully parallel 64K point radix-4(4) FFT processor. The radix-4(4) parallel unrolled architecture uses a novel radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. The radix-4(4) block can take all 256 inputs in parallel and can use the select control signals to generate one out of the 256 outputs. The resultant 64K point FFT processor shows significant reduction in intermediate memory but with increased hardware complexity. Compared to the state-of-art implementation 5], our architecture shows reduced latency with comparable throughput and area. The 64K point FFT architecture was synthesized using a 130nm CMOS technology which resulted in a throughput of 1.4 GSPS and latency of 47.7 mu s with a maximum clock frequency of 350MHz. When compared to 5], the latency is reduced by 303 mu s with 50.8% reduction in area.
Resumo:
Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with K-d values of 365.2 and 10.77 mu M, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12 x 10(-4) min(-1) mu M-1. Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Resumo:
alpha-Amino gamma-lactams have been synthesized from carbohydrate derived cyclopropanecarboxylates using N-iodosuccinimide (NIS) and NaN3. Cyclopropane ring opening with NIS and NaN3 in different solvents has been studied. Reductive cyclization of the intermediate di-azides leads to the carbohydrate fused alpha-amino gamma-lactam and gamma-lactams. Additionally, the methodology has been successfully extended to the synthesis of a glycopeptide. (C) 2014 Elsevier Ltd. All rights reserved.