969 resultados para School bags - Ergonomic design
Resumo:
Objectives The aim of this position paper is to discuss the role of affect in designing learning experiences to enhance expertise acquisition in sport. The design of learning environments and athlete development programmes are predicated on the successful sampling and simulation of competitive performance conditions during practice. This premise is captured by the concept of representative learning design, founded on an ecological dynamics approach to developing skill in sport, and based on the individual-environment relationship. In this paper we discuss how the effective development of expertise in sport could be enhanced by the consideration of affective constraints in the representative design of learning experiences. Conclusions Based on previous theoretical modelling and practical examples we delineate two key principles of Affective Learning Design: (i) the design of emotion-laden learning experiences that effectively simulate the constraints of performance environments in sport; (ii) recognising individualised emotional and coordination tendencies that are associated with different periods of learning. Considering the role of affect in learning environments has clear implications for how sport psychologists, athletes and coaches might collaborate to enhance the acquisition of expertise in sport.
Resumo:
This thesis investigates the Value Management processes used by construction project clients that effects project team involvement in VM workshops during the design stage of the projects. It is based on five case studies of the Malaysian international airport construction project packages. The focus of the research is on how issues related to infrastructure design that can improve construction processes on-site are being identified, analysed and resolved through multi-disciplinary team participation. The degrees of interaction, diversity of visualisation aids, certain cultural dimensions and the system thinking approach are found to have significant influence in maximizing participation among project team members during the entire VM workshop process.
Resumo:
Optimisation of organic Rankine cycles(ORCs for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. Thispaper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, therefrigerant R143a is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate R143a radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng–Robinson equations of state.The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.
Resumo:
Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns at ambient temperature. This research has investigated the accuracy of using current ambient temperature design rules in Australia/New Zealand (AS/NZS 4600), American (AISI S100) and European (Eurocode 3 Part 1.3) standards in determining the flexural–torsional buckling capacities of cold-formed steel columns at uniform elevated temperatures using appropriately reduced mechanical properties. It was found that these design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures. However, for fixed ended columns with warping fixity undergoing flexural–torsional buckling, the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore recommended the use of improved design rules developed for ambient temperature conditions to predict the axial compression capacities of fixed ended columns subject to flexural–torsional buckling at elevated temperatures within AS/NZS 4600 and AISI S100 design provisions. The accuracy of the proposed fire design rules was verified using finite element analysis and test results of cold-formed lipped channel columns at elevated temperatures except for low strength steel columns with intermediate slenderness whose behaviour was influenced by the increased nonlinearity in the stress–strain curves at elevated temperatures. Further research is required to include these effects within AS/NZS 4600 and AISI S100 design rules. However, Eurocode 3 Part 1.3 design rules can be used for this purpose by using suitable buckling curves as recommended in this paper.
Resumo:
Traditionally, the fire resistance rating of Light gauge steel frame (LSF) wall systems is based on approximate prescriptive methods developed using limited fire tests. These fire tests are conducted using standard fire time-temperature curve given in ISO 834. However, in recent times fire has become a major disaster in buildings due to the increase in fire loads as a result of modern furniture and lightweight construction, which make use of thermoplastics materials, synthetic foams and fabrics. Therefore a detailed research study into the performance of load bearing LSF wall systems under both standard and realistic design fires on one side was undertaken to develop improved fire design rules. This study included both full scale fire tests and numerical studies of eight different LSF wall systems conducted for both the standard fire curve and the recently developed realistic design fire curves. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated and their effects were included. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the fire test and finite element analysis results for various wall configurations, steel grades, thicknesses and load ratios under both standard and realistic design fire conditions. A simplified method was also proposed to predict the fire resistance rating of LSF walls based on two sets of equations developed for the load ratio-hot flange temperature and the time-temperature relationships. This paper presents the details of this study on LSF wall systems under fire conditions and the results.
Resumo:
Cold-formed steel members are widely used in load bearing Light gauge steel frame (LSF) wall systems with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. Hence there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the LSF wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the LSF wall studs. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of LSF wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strengths of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This paper presents the details of this investigation into the accuracy of using currently available fire design rules of LSF walls and the results.
Resumo:
Cold-formed steel members are often subject to axial compression loads in a range of applications. These thin-walled members can be subject to various types of buckling modes, including flexural-torsional buckling. Design standards provide guidelines for columns subject to flexural-torsional buckling modes at ambient temperature. However, there are no specific design guidelines for elevated temperature conditions. Hence extensive research efforts have gone into the many investigations addressing the flexural-torsional buckling behaviour of cold-formed steel columns at elevated temperatures.This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current ambient temperature Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures by simply using the appropriate elevated temperature mechanical properties. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This research has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses. This paper presents the details of this research study and the results.
Resumo:
The discipline of architecture focuses on designing the built environment in response to the needs of society, reflecting culture through materials and forms. The physical boundaries of the city have become blurred through the integration of digital media, connecting the physical environment with the digital. In the recent past the future was imagined as highly technological; Ridley Scott’s Blade Runner is set in 2019 and introduces a polluted world where supersized screens inject advertisements in the cluttered urban space. Now, in 2014 screens are central to everyday life, but in a completely different way in respect to what had been imagined. Through ubiquitous computing and social media, information is abundant. Digital technologies have changed the way people relate to urban form supporting discussion on multiple levels, allowing citizens to be more vocal than ever before. Bottom-up campaigns to oppose anticipated developments or to suggest intervention in the way cities are designed, are a common situation in several parts of the world. For some extent governments and local authorities are trying to engage with developing technologies, but a common issue is that social media cannot be controlled or filtered as can be done with more traditional consultation methods. We question how designers can use the affordances of urban informatics to obtain and navigate useful social information to inform architectural and urban design. This research investigates different approaches to engage communities in the debate on the built environment. Physical and digital discussions have been initiated to capture citizens’ opinions on the use and design of public places. Online platforms, urban screens, mobile apps and guerrilla techniques are explored in the context of Brisbane, Australia.
Resumo:
Purpose: The paper seeks to investigate emerging knowledge precincts under the urban design lens in order to identify recurrent spatial patterns of urban forms and functions to gather an understanding of physical aspects that contribute to the creation of place quality. Scope: This paper focuses on the physical design and layout of specific precincts. Although socio-economic and other factors come into play imparting the distinctiveness; this paper only focuses on the spatial dimensions. Method: The research first develops a design typology framework through the lead of literature, and then utilizes it to identify recurrent elements in knowledge precinct design in order to develop taxonomy of patterns and layouts. Results: The research reported in this paper provides preliminary insights into the various form and functional factors playing role in the design of knowledge precincts and evaluates the elements that contribute to the success of these urban interventions. Recommendations: The paper recommends the use of particular design-based solutions in order to enhance the place making in knowledge precincts. Conclusions: The study concludes that despite the locational, regulatory and other contextual differences, the underlying driving principle of providing place quality to people leads to the emergence of identifiable spatial patterns across the knowledge precincts.
Resumo:
A travel article about Helsinki exploring the city's design culture. I’M often told that I’m from Finland. Even those who’ve known me for years confuse it with my birthplace, which is, in fact, Iceland. I’m not sure why the two countries are mixed up in this way, but it might be that Iceland and Finland are, in a sense, the “other” Scandinavian nations – on different sides of the Nordic world, but in the mind joined as its outer borders...
Resumo:
Driven by information accessibility-on-demand provided by the internet, education modes are changing from a teacher-led approach focused on content delivery and assessible outcomes, to a learner-based approach encouraging self-directed, peer-tutored, and cooperative learning. New pedagogies are required to extend learning beyond the classroom and traditional subject areas such as contemporary arts, in alignment with the cross disciplinary priorities of the Australian Curriculum and values of the International Baccalaureate Organisation. This research explores how partnerships with universities and cultural organisations are implicated in the generation of these new forms of pedagogy and contribute to the field of educational research within the context of Education Queensland’s Framework For Gifted Education. In particular, this paper explores a new pedagogical framework for highly capable year five to nine Queensland state school students at the intersection of arts, design and the sciences, which has arisen from an explicit secondary/ tertiary partnership between the Queensland University of Technology Creative Industries Faculty and Precincts and the Queensland Academies Young Scholars Program. The Young Scholars Program offers experiences in the International Baccalaureate and Australian Curriculum contexts to enhance outcomes via global understanding, unique industry partnerships and 21st century pedagogical innovation based not on 'content' but tacit/experiential learning concepts including immersive, creative, intellectual and social strategies. These strategies for highly capable students are centred around authentic opportunities, primary resources, transdisciplinary learning and relationships with likeminded peers including tertiary arts, design and STEM educators and students, professionals and researchers. The presentation details case studies which are hands-on real time workshops involving inquiry based challenges in the arts, design and sciences, mathematics, history, creative writing and other disciplines, with content drawn from collections from public institutions, academic research and tertiary pedagogy. Both programs implicate student collaboration and creative production as methodology/data capture for ongoing action research, in alignment with the Framework For Gifted Education’s emphasis on evidence-based practices. They also challenge gifted students “to continue their development through curricular activities that require depth of study, complexity of thinking, fast pace of learning, high-level skills development and/or creative and critical thinking (e.g. through independent investigations, tiered tasks, diverse real-world applications, mentors)”(Education Queensland, 2011:3). This presentation highlights the strengths of the ongoing collaboration between QUT Creative industries Faculty and Queensland Academies, which not only provides successful extra curricular activities for gifted students towards a place in the International Baccalaureate Program, but also provides mentoring opportunities for tertiary students in their field of endeavor to assist with their own learning, and unique research opportunities for the Faculty as it focuses on excellence in arts, design and creative education and research. Education Queensland.(2011). Framework For Gifted Education Revised Edition 2011 (accessed Nov 19 2011)
An investigation of the validity of the MMPI-2 Response Bias Scale using an analog simulation design