979 resultados para Scales Models
Resumo:
Acceleration of the universe has been established but not explained. During the past few years precise cosmological experiments have confirmed the standard big bang scenario of a flat universe undergoing an inflationary expansion in its earliest stages, where the perturbations are generated that eventually form into galaxies and other structure in matter, most of which is non-baryonic dark matter. Curiously, the universe has presently entered into another period of acceleration. Such a result is inferred from observations of extra-galactic supernovae and is independently supported by the cosmic microwave background radiation and large scale structure data. It seems there is a positive cosmological constant speeding up the universal expansion of space. Then the vacuum energy density the constant describes should be about a dozen times the present energy density in visible matter, but particle physics scales are enormously larger than that. This is the cosmological constant problem, perhaps the greatest mystery of contemporary cosmology. In this thesis we will explore alternative agents of the acceleration. Generically, such are called dark energy. If some symmetry turns off vacuum energy, its value is not a problem but one needs some dark energy. Such could be a scalar field dynamically evolving in its potential, or some other exotic constituent exhibiting negative pressure. Another option is to assume that gravity at cosmological scales is not well described by general relativity. In a modified theory of gravity one might find the expansion rate increasing in a universe filled by just dark matter and baryons. Such possibilities are taken here under investigation. The main goal is to uncover observational consequences of different models of dark energy, the emphasis being on their implications for the formation of large-scale structure of the universe. Possible properties of dark energy are investigated using phenomenological paramaterizations, but several specific models are also considered in detail. Difficulties in unifying dark matter and dark energy into a single concept are pointed out. Considerable attention is on modifications of gravity resulting in second order field equations. It is shown that in a general class of such models the viable ones represent effectively the cosmological constant, while from another class one might find interesting modifications of the standard cosmological scenario yet allowed by observations. The thesis consists of seven research papers preceded by an introductory discussion.
Resumo:
This thesis deals with theoretical modeling of the electrodynamics of auroral ionospheres. In the five research articles forming the main part of the thesis we have concentrated on two main themes: Development of new data-analysis techniques and study of inductive phenomena in the ionospheric electrodynamics. The introductory part of the thesis provides a background for these new results and places them in the wider context of ionospheric research. In this thesis we have developed a new tool (called 1D SECS) for analysing ground based magnetic measurements from a 1-dimensional magnetometer chain (usually aligned in the North-South direction) and a new method for obtaining ionospheric electric field from combined ground based magnetic measurements and estimated ionospheric electric conductance. Both these methods are based on earlier work, but contain important new features: 1D SECS respects the spherical geometry of large scale ionospheric electrojet systems and due to an innovative way of implementing boundary conditions the new method for obtaining electric fields can be applied also at local scale studies. These new calculation methods have been tested using both simulated and real data. The tests indicate that the new methods are more reliable than the previous techniques. Inductive phenomena are intimately related to temporal changes in electric currents. As the large scale ionospheric current systems change relatively slowly, in time scales of several minutes or hours, inductive effects are usually assumed to be negligible. However, during the past ten years, it has been realised that induction can play an important part in some ionospheric phenomena. In this thesis we have studied the role of inductive electric fields and currents in ionospheric electrodynamics. We have formulated the induction problem so that only ionospheric electric parameters are used in the calculations. This is in contrast to previous studies, which require knowledge of the magnetospheric-ionosphere coupling. We have applied our technique to several realistic models of typical auroral phenomena. The results indicate that inductive electric fields and currents are locally important during the most dynamical phenomena (like the westward travelling surge, WTS). In these situations induction may locally contribute up to 20-30% of the total ionospheric electric field and currents. Inductive phenomena do also change the field-aligned currents flowing between the ionosphere and magnetosphere, thus modifying the coupling between the two regions.
Resumo:
This paper proposes the use of empirical modeling techniques for building microarchitecture sensitive models for compiler optimizations. The models we build relate program performance to settings of compiler optimization flags, associated heuristics and key microarchitectural parameters. Unlike traditional analytical modeling methods, this relationship is learned entirely from data obtained by measuring performance at a small number of carefully selected compiler/microarchitecture configurations. We evaluate three different learning techniques in this context viz. linear regression, adaptive regression splines and radial basis function networks. We use the generated models to a) predict program performance at arbitrary compiler/microarchitecture configurations, b) quantify the significance of complex interactions between optimizations and the microarchitecture, and c) efficiently search for'optimal' settings of optimization flags and heuristics for any given microarchitectural configuration. Our evaluation using benchmarks from the SPEC CPU2000 suits suggests that accurate models (< 5% average error in prediction) can be generated using a reasonable number of simulations. We also find that using compiler settings prescribed by a model-based search can improve program performance by as much as 19% (with an average of 9.5%) over highly optimized binaries.
Resumo:
Within Australia, there have been many attempts to pass voluntary euthanasia (VE) or physician-assisted suicide (PAS) legislation. From 16 June 1993 until the date of writing, 51 Bills have been introduced into Australian parliaments dealing with legalising VE or PAS. Despite these numerous attempts, the only successful Bill was the Rights of the Terminally Ill Act 1995 (NT), which was enacted in the Northern Territory, but a short time later overturned by the controversial Euthanasia Laws Act 1997 (Cth). Yet, in stark contrast to the significant political opposition, for decades Australian public opinion has overwhelmingly supported law reform legalising VE or PAS. While there is ongoing debate in Australia, both through public discourse and scholarly publications, about the merits and dangers of reform in this field, there has been remarkably little analysis of the numerous legislative attempts to reform the law, and the context in which those reform attempts occurred. The aim of this article is to better understand the reform landscape in Australia over the past two decades. The information provided in this article will better equip Australians, both politicians and the general public, to have a more nuanced understanding of the political context in which the euthanasia debate has been and is occurring. It will also facilitate a more informed debate in the future.
Resumo:
This article presents and evaluates Quantum Inspired models of Target Activation using Cued-Target Recall Memory Modelling over multiple sources of Free Association data. Two components were evaluated: Whether Quantum Inspired models of Target Activation would provide a better framework than their classical psychological counterparts and how robust these models are across the different sources of Free Association data. In previous work, a formal model of cued-target recall did not exist and as such Target Activation was unable to be assessed directly. Further to that, the data source used was suspected of suffering from temporal and geographical bias. As a consequence, Target Activation was measured against cued-target recall data as an approximation of performance. Since then, a formal model of cued-target recall (PIER3) has been developed [10] with alternative sources of data also becoming available. This allowed us to directly model target activation in cued-target recall with human cued-target recall pairs and use multiply sources of Free Association Data. Featural Characteristics known to be important to Target Activation were measured for each of the data sources to identify any major differences that may explain variations in performance for each of the models. Each of the activation models were used in the PIER3 memory model for each of the data sources and was benchmarked against cued-target recall pairs provided by the University of South Florida (USF). Two methods where used to evaluate performance. The first involved measuring the divergence between the sets of results using the Kullback Leibler (KL) divergence with the second utilizing a previous statistical analysis of the errors [9]. Of the three sources of data, two were sourced from human subjects being the USF Free Association Norms and the University of Leuven (UL) Free Association Networks. The third was sourced from a new method put forward by Galea and Bruza, 2015 in which pseudo Free Association Networks (Corpus Based Association Networks - CANs) are built using co-occurrence statistics on large text corpus. It was found that the Quantum Inspired Models of Target Activation not only outperformed the classical psychological model but was more robust across a variety of data sources.
Resumo:
This paper presents the results of shaking table tests on geotextile-reinforced wrap-faced soil-retaining walls. Construction of model retaining walls in a laminar box mounted on a shaking table, instrumentation, and results from the shaking table tests are discussed in detail. The base motion parameters, surcharge pressure and number of reinforcing layers are varied in different model tests. It is observed from these tests that the response of the wrap-faced soil-retaining walls is significantly affected by the base acceleration levels, frequency of shaking, quantity of reinforcement and magnitude of surcharge pressure on the crest. The effects of these different parameters on acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are also presented. The results obtained from this study are helpful in understanding the relative performance of reinforced soil-retaining walls under different test conditions used in the experiments.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.
Resumo:
The goal of this study was to examine the role of organizational causal attribution in understanding the relation of work stressors (work-role overload, excessive role responsibility, and unpleasant physical environment) and personal resources (social support and cognitive coping) to such organizational-attitudinal outcomes as work engagement, turnover intention, and organizational identification. In some analyses, cognitive coping was also treated as an organizational outcome. Causal attribution was conceptualized in terms of four dimensions: internality-externality, attributing the cause of one’s successes and failures to oneself, as opposed to external factors, stability (thinking that the cause of one’s successes and failures is stable over time), globality (perceiving the cause to be operative on many areas of one’s life), and controllability (believing that one can control the causes of one’s successes and failures). Several hypotheses were derived from Karasek’s (1989) Job Demands–Control (JD-C) model and from the Job Demands–Resources (JD-R) model (Demerouti, Bakker, Nachreiner & Schaufeli, 2001). Based on the JD-C model, a number of moderation effects were predicted, stating that the strength of the association of work stressors with the outcome variables (e.g. turnover intentions) varies as a function of the causal attribution; for example, unpleasant work environment is more strongly associated with turnover intention among those with an external locus of causality than among those with an internal locuse of causality. From the JD-R model, a number of hypotheses on the mediation model were derived. They were based on two processes posited by the model: an energy-draining process in which work stressors along with a mediating effect of causal attribution for failures deplete the nurses’ energy, leading to turnover intention, and a motivational process in which personal resources along with a mediating effect of causal attribution for successes foster the nurses’ engagement in their work, leading to higher organizational identification and to decreased intention to leave the nursing job. For instance, it was expected that the relationship between work stressors and turnover intention could be explained (mediated) by a tendency to attribute one’s work failures to stable causes. The data were collected from among Finnish hospital nurses using e-questionnaires. Overall 934 nurses responded the questionnaires. Work stressors and personal resources were measured by five scales derived from the Occupational Stress Inventory-Revised (Osipow, 1998). Causal attribution was measured using the Occupational Attributional Style Questionnaire (Furnham, 2004). Work engagement was assessed through the Utrecht Work Engagement Scale (Schaufeli & al., 2002), turnover intention by the Van Veldhoven & Meijman (1994) scale, and organizational identification by the Mael & Ashforth (1992) measure. The results provided support for the function of causal attribution in the overall work stress process. Findings related to the moderation model can be divided into three main findings. First, external locus of causality along with job level moderated the relationship between work overload and cognitive coping. Hence, this interaction was evidenced only among nurses in non-supervisory positions. Second, external locus of causality and job level together moderated the relationship between physical environment and turnover intention. An opposite pattern of interaction was found for this interaction: among nurses, externality exacerbated the effect of perceived unpleasantness of the physical environment on turnover intention, whereas among supervisors internality produced the same effect. Third, job level also disclosed a moderation effect for controllability attribution over the relationship between physical environment and cognitive coping. Findings related to the mediation model for the energetic process indicated that the partial model in which work stressors have also a direct effect on turnover intention fitted the data better. In the mediation model for the motivational process, an intermediate mediation effect in which the effects of personal resources on turnover intention went through two mediators (e.g., causal dimensions and organizational identification) fitted the data better. All dimensions of causal attribution appeared to follow a somewhat unique pattern of mediation effect not only for energetic but also for motivational processes. Overall findings on mediation models partly supported the two simultaneous underlying processes proposed by the JD-R model. While in the energetic process the dimension of externality mediated the relationship between stressors and turnover partially, all the dimensions of causal attribution appeared to entail significant mediator effects in the motivational process. The general findings supported the moderation effect and the mediation effect of causal attribution in the work stress process. The study contributes to several research traditions, including the interaction approach, the JD-C, and the JD-R models. However, many potential functions of organizational causal attribution are yet to be evaluated by relevant academic and organizational research. Keywords: organizational causal attribution, optimistic / pessimistic attributional style, work stressors, organisational stress process, stressors in nursing profession, hospital nursing, JD-R model, personal resources, turnover intention, work engagement, organizational identification.
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.
Resumo:
Field placements provide social work students with the opportunity to integrate their classroom learning with the knowledge and skills used in various human service programs. The supervision structure that has most commonly been used is the intensive one-to-one, clinical teaching model. However, this model is being challenged by significant changes in educational and industry sectors, which have led to an increased use of alternative fieldwork structures and supervision arrangements, including task supervision, group supervision, external supervision, and shared supervisory arrangements. This study focuses on identifying models of supervision and student satisfaction with their learning experiences and the supervision received on placement. The study analysed responses to a questionnaire administered to 263 undergraduate social work students enrolled in three different campuses in Australia after they had completed their first or final field placement. The study identified that just over half of the placements used the traditional one student to one social work supervisor model. A number of “emerging” models were also identified, where two or more social workers were involved in the professional supervision of the student. High levels of dissatisfaction were reported by those students who received external social work supervision. Results suggest that students are more satisfied across all aspects of the placement where there is a strong on-site social work presence.
Resumo:
Field placements provide social work students with the opportunity to integrate their classroom learning with the knowledge and skills used in various human service programs. The supervision structure that has most commonly been used is the intensive one-to-one, clinical teaching model. However, this model is being challenged by significant changes in educational and industry sectors, which have led to an increased use of alternative fieldwork structures and supervision arrangements, including task supervision, group supervision, external supervision, and shared supervisory arrangements. This study focuses on identifying models of supervision and student satisfaction with their learning experiences and the supervision received on placement. The study analysed responses to a questionnaire administered to 263 undergraduate social work students enrolled in three different campuses in Australia after they had completed their first or final field placement. The study identified that just over half of the placements used the traditional one student to one social work supervisor model. A number of “emerging” models were also identified, where two or more social workers were involved in the professional supervision of the student. High levels of dissatisfaction were reported by those students who received external social work supervision. Results suggest that students are more satisfied across all aspects of the placement where there is a strong on-site social work presence.
Resumo:
This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and German business cycle recession periods. Financial variables, such as interest rates and stock market returns, are used as predictive variables. The empirical results suggest that the recession periods are predictable and dynamic probit models, especially models with the autoregressive structure, outperform the static model. Chapter 3 proposes a Lagrange Multiplier (LM) test for the usefulness of the autoregressive structure of the probit model. The finite sample properties of the LM test are considered with simulation experiments. Results indicate that the two alternative LM test statistics have reasonable size and power in large samples. In small samples, a parametric bootstrap method is suggested to obtain approximately correct size. In Chapter 4, the predictive power of dynamic probit models in predicting the direction of stock market returns are examined. The novel idea is to use recession forecast (see Chapter 2) as a predictor of the stock return sign. The evidence suggests that the signs of the U.S. excess stock returns over the risk-free return are predictable both in and out of sample. The new "error correction" probit model yields the best forecasts and it also outperforms other predictive models, such as ARMAX models, in terms of statistical and economic goodness-of-fit measures. Chapter 5 generalizes the analysis of univariate models considered in Chapters 2 4 to the case of a bivariate model. A new bivariate autoregressive probit model is applied to predict the current state of the U.S. business cycle and growth rate cycle periods. Evidence of predictability of both cycle indicators is obtained and the bivariate model is found to outperform the univariate models in terms of predictive power.
Resumo:
We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 inverse fb of integrated luminosity of proton-antiproton collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the observed mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional parameter space of tan beta versus m(A).