994 resultados para STOCHASTIC RESONANCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium species in tetrahedral and octahedral coordination in V-MCM-41 molecular sieve are characterized by UV resonance Raman bands at 1070 and 930 cm(-1) respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Framework titanium in Ti-silicalite-1 (TS-1) zeolite was selectively identified by its resonance Raman bands using ultraviolet (W) Raman spectroscopy. Raman spectra of the TS-1 and silicalite-1 zeolites were obtained and compared using continuous wave laser lines at 244, 325, and 488 nm as the excitation sources. It was only with the excitation at 244 nm that resonance enhanced Raman bands at 490, 530, and 1125 cm(-1) appeared exclusively for the TS-1 zeolite. Furthermore, these bands increased in intensity with the crystallization time of the TS-1 zeolite. The Raman bands at 490, 530, and 1125 cm(-1) are identified as the framework titanium species because they only appeared when the laser excites the charge-transfer transition of the framework titanium species in the TS-1. No resonance Raman enhancement was detected for the bands of silicalite-1 zeolite and for the band at 960 cm(-1) of TS-1 with any of the excitation sources ranging from the visible tb UV regions. This approach can be applicable for the identification of other transition metal ions substituted in the framework of a zeolite or any other molecular sieve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vehicle navigation problem studied in Bell (2009) is revisited and a time-dependent reverse Hyperstar algorithm is presented. This minimises the expected time of arrival at the destination, and all intermediate nodes, where expectation is based on a pessimistic (or risk-averse) view of unknown link delays. This may also be regarded as a hyperpath version of the Chabini and Lan (2002) algorithm, which itself is a time-dependent A* algorithm. Links are assigned undelayed travel times and maximum delays, both of which are potentially functions of the time of arrival at the respective link. The driver seeks probabilities for link use that minimise his/her maximum exposure to delay on the approach to each node, leading to the determination of the pessimistic expected time of arrival. Since the context considered is vehicle navigation where the driver is not making repeated trips, the probability of link use may be interpreted as a measure of link attractiveness, so a link with a zero probability of use is unattractive while a link with a probability of use equal to one will have no attractive alternatives. A solution algorithm is presented and proven to solve the problem provided the node potentials are feasible and a FIFO condition applies for undelayed link travel times. The paper concludes with a numerical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gough, John, 'Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem', Journal of Mathematical Physics. 47, 113509, (2006)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gough, John; Van Handel, R., (2007) 'Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode', Journal of Statistical Physics 127(3) pp.575-607 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plakhov, A.Y.; Cruz, P., (2004) 'A stochastic approximation algorithm with step size adaptation', Journal of Mathematical Science 120(1) pp.964-973 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li, Xing; Habbal, S.R., (2005) 'Hybrid simulation of ion cyclotron resonance in the solar wind: evolution of velocity distribution functions', Journal of Geophysical Research 110(A10) pp.A10109 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for reconstruction of 3D polygonal models from multiple views is presented. The method uses sampling techniques to construct a texture-mapped semi-regular polygonal mesh of the object in question. Given a set of views and segmentation of the object in each view, constructive solid geometry is used to build a visual hull from silhouette prisms. The resulting polygonal mesh is simplified and subdivided to produce a semi-regular mesh. Regions of model fit inaccuracy are found by projecting the reference images onto the mesh from different views. The resulting error images for each view are used to compute a probability density function, and several points are sampled from it. Along the epipolar lines corresponding to these sampled points, photometric consistency is evaluated. The mesh surface is then pulled towards the regions of higher photometric consistency using free-form deformations. This sampling-based approach produces a photometrically consistent solution in much less time than possible with previous multi-view algorithms given arbitrary camera placement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iterative method for reconstructing a 3D polygonal mesh and color texture map from multiple views of an object is presented. In each iteration, the method first estimates a texture map given the current shape estimate. The texture map and its associated residual error image are obtained via maximum a posteriori estimation and reprojection of the multiple views into texture space. Next, the surface shape is adjusted to minimize residual error in texture space. The surface is deformed towards a photometrically-consistent solution via a series of 1D epipolar searches at randomly selected surface points. The texture space formulation has improved computational complexity over standard image-based error approaches, and allows computation of the reprojection error and uncertainty for any point on the surface. Moreover, shape adjustments can be constrained such that the recovered model's silhouette matches those of the input images. Experiments with real world imagery demonstrate the validity of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method that combines shape-based object recognition and image segmentation is proposed for shape retrieval from images. Given a shape prior represented in a multi-scale curvature form, the proposed method identifies the target objects in images by grouping oversegmented image regions. The problem is formulated in a unified probabilistic framework and solved by a stochastic Markov Chain Monte Carlo (MCMC) mechanism. By this means, object segmentation and recognition are accomplished simultaneously. Within each sampling move during the simulation process,probabilistic region grouping operations are influenced by both the image information and the shape similarity constraint. The latter constraint is measured by a partial shape matching process. A generalized parallel algorithm by Barbu and Zhu,combined with a large sampling jump and other implementation improvements, greatly speeds up the overall stochastic process. The proposed method supports the segmentation and recognition of multiple occluded objects in images. Experimental results are provided for both synthetic and real images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SyNAPSE program of the Defense Advanced Projects Research Agency (Hewlett-Packard Company, subcontract under DARPA prime contract HR0011-09-3-0001, and HRL Laboratories LLC, subcontract #801881-BS under DARPA prime contract HR0011-09-C-0001); CELEST, an NSF Science of Learning Center (SBE-0354378)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We can recognize objects through receiving continuously huge temporal information including redundancy and noise, and can memorize them. This paper proposes a neural network model which extracts pre-recognized patterns from temporally sequential patterns which include redundancy, and memorizes the patterns temporarily. This model consists of an adaptive resonance system and a recurrent time-delay network. The extraction is executed by the matching mechanism of the adaptive resonance system, and the temporal information is processed and stored by the recurrent network. Simple simulations are examined to exemplify the property of extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fuzzy ART system introduced herein incorporates computations from fuzzy set theory into ART 1. For example, the intersection (n) operator used in ART 1 learning is replaced by the MIN operator (A) of fuzzy set theory. Fuzzy ART reduces to ART 1 in response to binary input vectors, but can also learn stable categories in response to analog input vectors. In particular, the MIN operator reduces to the intersection operator in the binary case. Learning is stable because all adaptive weights can only decrease in time. A preprocessing step, called complement coding, uses on-cell and off-cell responses to prevent category proliferation. Complement coding normalizes input vectors while preserving the amplitudes of individual feature activations.